Mathematics  >  QUESTION PAPER & MARK SCHEME  >  pearson edexcel gce question booklet mark scheme results November 2021 Further Mathematics Advanced  (All)

pearson edexcel gce question booklet mark scheme results November 2021 Further Mathematics Advanced PAPER 3A: Further Pure Mathematics 1

Document Content and Description Below

pearson-edexcel-gce-question-booklet-mark-scheme-results-november-2021-further-mathematics-advanced-level-in-futher-mathematics-paper-9fm0-3a 1. The ellipse E has equation x y 2 2 36 20 + = 1 Fi ... nd (a) the coordinates of the foci of E, (3) (b) the equations of the directrices of E. (2) _________________________________________ ____________________________________________ _______________________________________________ ______________________________________ _____________________________________________________________________________________ _____________________________________________ ________________________________________ _________________________ ___________________ _________________________________________ ____________________________________________ _________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ __________________________________________ ___________________________________________ _________________________________________ ____________________________________________ ________________________________________ _____________________________________________ _______________________________________ ______________________________________________ ______________________________________ _______________________________________________ _____________________________________________________________________________________ ____________________________________ _________________________________________________ ___________________________________ __________________________________________________ ___________________________________ __________________________________________________ _____________________________________________________________________________________ _________________________________ ________________ . (i) Use the substitution t = tan x 2 to prove the identity sin cos sin cos x x x x − + + − 1 1 ≡ sec x + tanx x ≠ 2 nπ n (5) (ii) Use the substitution t = tan θ2 to determine the exact value of 2 0 5 d 4 2cos π θ ∫ + θ giving your answer in simplest form. (5) _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ ___________________________________ [Show More]

Last updated: 3 years ago

Preview 1 out of 52 pages

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)
Preview image of pearson edexcel gce question booklet mark scheme results November 2021 Further Mathematics Advanced PAPER 3A: Further Pure Mathematics 1 document

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Reviews( 0 )

$11.50

Buy Now

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Instant download

Can't find what you want? Try our AI powered Search

221
1

Document information


Connected school, study & course


About the document


Uploaded On

May 21, 2022

Number of pages

52

Written in

All

Seller


Profile illustration for Excel
Excel

Member since 3 years

246 Documents Sold

Reviews Received
15
2
2
1
6
Additional information

This document has been written for:

Uploaded

May 21, 2022

Downloads

 1

Views

 221

Document Keyword Tags


$11.50
What is Scholarfriends

Scholarfriends.com Online Platform by Browsegrades Inc. 651N South Broad St, Middletown DE. United States.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·