Calculus > TEST BANKS > Calculus (BOOK) An Approach Using Infinitesimals, by H. Jerome Keisler (All)

Calculus (BOOK) An Approach Using Infinitesimals, by H. Jerome Keisler

Document Content and Description Below

Contents 1 Analytic Geometry 1 1.1 Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Distance Between Two Points; Circles . . . . . . . . . . . . . . . . 7 1.3 Functions... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Shifts and Dilations . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Instantaneous Rate of Change: The Derivative 19 2.1 The slope of a function . . . . . . . . . . . . . . . . . . . . . . 19 2.2 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 The Derivative Function . . . . . . . . . . . . . . . . . . . . . 36 2.5 Adjectives For Functions . . . . . . . . . . . . . . . . . . . . . 41 v vi Contents 3 Rules for Finding Derivatives 45 3.1 The Power Rule . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Linearity of the Derivative . . . . . . . . . . . . . . . . . . . . 48 3.3 The Product Rule . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4 The Quotient Rule . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 Transcendental Functions 63 4.1 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . 63 4.2 The Derivative of sin x . . . . . . . . . . . . . . . . . . . . . . 66 4.3 A hard limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4 The Derivative of sin x, continued . . . . . . . . . . . . . . . . . 70 4.5 Derivatives of the Trigonometric Functions . . . . . . . . . . . . 71 4.6 Exponential and Logarithmic functions . . . . . . . . . . . . . . 72 4.7 Derivatives of the exponential and logarithmic functions . . . . . 74 4.8 Limits revisited . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.9 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . 83 4.10 Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . 88 4.11 Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . 91 5 Curve Sketching 95 5.1 Maxima and Minima . . . . . . . . . . . . . . . . . . . . . . . 95 5.2 The first derivative test . . . . . . . . . . . . . . . . . . . . . . 99 5.3 The second derivative test . . . . . . . . . . . . . . . . . . . 101 5.4 Concavity and inflection points . . . . . . . . . . . . . . . . . 102 5.5 Asymptotes and Other Things to Look For . . . . . . . . . . . 104 Contents vii 6 Applications of the Derivative 107 6.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2 Related Rates . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.3 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . 129 6.4 Linear Approximations . . . . . . . . . . . . . . . . . . . . . 133 6.5 The Mean Value Theorem . . . . . . . . . . . . . . . . . . . 135 7 Integration 141 7.1 Two examples . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.2 The Fundamental Theorem of Calculus . . . . . . . . . . . . . 145 7.3 Some Properties of Integrals . . . . . . . . . . . . . . . . . . 152 8 Techniques of Integration 157 8.1 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . 158 8.2 Powers of sine and cosine . . . . . . . . . . . . . . . . . . . . 163 8.3 Trigonometric Substitutions . . . . . . . . . . . . . . . . . . . 165 8.4 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . 169 8.5 Rational Functions . . . . . . . . . . . . . . . . . . . . . . . 173 8.6 Additional exercises . . . . . . . . . . . . . . . . . . . . . . . 177 viii Contents 9 Applications of Integration 179 9.1 Area between curves . . . . . . . . . . . . . . . . . . . . . . 179 9.2 Distance, Velocity, Acceleration . . . . . . . . . . . . . . . . . 184 9.3 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 9.4 Average value of a function . . . . . . . . . . . . . . . . . . . 194 9.5 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 9.6 Center of Mass . . . . . . . . . . . . . . . . . . . . . . . . . 202 9.7 Kinetic energy; improper integrals . . . . . . . . . . . . . . . 207 9.8 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 9.9 Arc Length . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 9.10 Surface Area . . . . . . . . . . . . . . . . . . . . . . . . . . 224 9.11 Differential equations . . . . . . . . . . . . . . . . . . . . . . 229 10 Polar Coordinates, Parametric Equations 235 10.1 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . 235 10.2 Slopes in polar coordinates . . . . . . . . . . . . . . . . . . . 239 10.3 Areas in polar coordinates . . . . . . . . . . . . . . . . . . . 241 10.4 Parametric Equations . . . . . . . . . . . . . . . . . . . . . . 245 10.5 Calculus with Parametric Equations . . . . . . . . . . . . . . 248 Contents ix 11 Sequences and Series 253 11.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 11.2 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 11.3 The Integral Test . . . . . . . . . . . . . . . . . . . . . . . . 264 11.4 Alternating Series . . . . . . . . . . . . . . . . . . . . . . . . 269 11.5 Comparison Tests . . . . . . . . . . . . . . . . . . . . . . . . 271 11.6 Absolute Convergence . . . . . . . . . . . . . . . . . . . . . 274 11.7 The Ratio and Root Tests . . . . . . . . . . . . . . . . . . . 276 11.8 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . 279 11.9 Calculus with Power Series . . . . . . . . . . . . . . . . . . . 282 11.10 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . 283 11.11 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 287 11.12 Additional exercises . . . . . . . . . . . . . . . . . . . . . . . 291 [Show More]

Last updated: 2 years ago

Preview 1 out of 328 pages

Buy Now

Instant download

We Accept:

We Accept
document-preview

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

We Accept

Reviews( 0 )

$15.00

Buy Now

We Accept:

We Accept

Instant download

Can't find what you want? Try our AI powered Search

94
0

Document information


Connected school, study & course


About the document


Uploaded On

Sep 02, 2021

Number of pages

328

Written in

Seller


seller-icon
Academia1434

Member since 5 years

212 Documents Sold

Reviews Received
36
2
4
2
17
Additional information

This document has been written for:

Uploaded

Sep 02, 2021

Downloads

 0

Views

 94

Document Keyword Tags


$15.00
What is Scholarfriends

In Scholarfriends, a student can earn by offering help to other student. Students can help other students with materials by upploading their notes and earn money.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·