Calculus > TEST BANKS > Calculus (BOOK) An Approach Using Infinitesimals, by H. Jerome Keisler (All)
Contents 1 Analytic Geometry 1 1.1 Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Distance Between Two Points; Circles . . . . . . . . . . . . . . . . 7 1.3 Functions... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.4 Shifts and Dilations . . . . . . . . . . . . . . . . . . . . . . . . 14 2 Instantaneous Rate of Change: The Derivative 19 2.1 The slope of a function . . . . . . . . . . . . . . . . . . . . . . 19 2.2 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.4 The Derivative Function . . . . . . . . . . . . . . . . . . . . . 36 2.5 Adjectives For Functions . . . . . . . . . . . . . . . . . . . . . 41 v vi Contents 3 Rules for Finding Derivatives 45 3.1 The Power Rule . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2 Linearity of the Derivative . . . . . . . . . . . . . . . . . . . . 48 3.3 The Product Rule . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4 The Quotient Rule . . . . . . . . . . . . . . . . . . . . . . . . 53 3.5 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 Transcendental Functions 63 4.1 Trigonometric Functions . . . . . . . . . . . . . . . . . . . . . 63 4.2 The Derivative of sin x . . . . . . . . . . . . . . . . . . . . . . 66 4.3 A hard limit . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 4.4 The Derivative of sin x, continued . . . . . . . . . . . . . . . . . 70 4.5 Derivatives of the Trigonometric Functions . . . . . . . . . . . . 71 4.6 Exponential and Logarithmic functions . . . . . . . . . . . . . . 72 4.7 Derivatives of the exponential and logarithmic functions . . . . . 74 4.8 Limits revisited . . . . . . . . . . . . . . . . . . . . . . . . . . 80 4.9 Implicit Differentiation . . . . . . . . . . . . . . . . . . . . . . 83 4.10 Inverse Trigonometric Functions . . . . . . . . . . . . . . . . . 88 4.11 Hyperbolic Functions . . . . . . . . . . . . . . . . . . . . . . . 91 5 Curve Sketching 95 5.1 Maxima and Minima . . . . . . . . . . . . . . . . . . . . . . . 95 5.2 The first derivative test . . . . . . . . . . . . . . . . . . . . . . 99 5.3 The second derivative test . . . . . . . . . . . . . . . . . . . 101 5.4 Concavity and inflection points . . . . . . . . . . . . . . . . . 102 5.5 Asymptotes and Other Things to Look For . . . . . . . . . . . 104 Contents vii 6 Applications of the Derivative 107 6.1 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.2 Related Rates . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.3 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . 129 6.4 Linear Approximations . . . . . . . . . . . . . . . . . . . . . 133 6.5 The Mean Value Theorem . . . . . . . . . . . . . . . . . . . 135 7 Integration 141 7.1 Two examples . . . . . . . . . . . . . . . . . . . . . . . . . 141 7.2 The Fundamental Theorem of Calculus . . . . . . . . . . . . . 145 7.3 Some Properties of Integrals . . . . . . . . . . . . . . . . . . 152 8 Techniques of Integration 157 8.1 Substitution . . . . . . . . . . . . . . . . . . . . . . . . . . 158 8.2 Powers of sine and cosine . . . . . . . . . . . . . . . . . . . . 163 8.3 Trigonometric Substitutions . . . . . . . . . . . . . . . . . . . 165 8.4 Integration by Parts . . . . . . . . . . . . . . . . . . . . . . 169 8.5 Rational Functions . . . . . . . . . . . . . . . . . . . . . . . 173 8.6 Additional exercises . . . . . . . . . . . . . . . . . . . . . . . 177 viii Contents 9 Applications of Integration 179 9.1 Area between curves . . . . . . . . . . . . . . . . . . . . . . 179 9.2 Distance, Velocity, Acceleration . . . . . . . . . . . . . . . . . 184 9.3 Volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 9.4 Average value of a function . . . . . . . . . . . . . . . . . . . 194 9.5 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 9.6 Center of Mass . . . . . . . . . . . . . . . . . . . . . . . . . 202 9.7 Kinetic energy; improper integrals . . . . . . . . . . . . . . . 207 9.8 Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . 212 9.9 Arc Length . . . . . . . . . . . . . . . . . . . . . . . . . . . 222 9.10 Surface Area . . . . . . . . . . . . . . . . . . . . . . . . . . 224 9.11 Differential equations . . . . . . . . . . . . . . . . . . . . . . 229 10 Polar Coordinates, Parametric Equations 235 10.1 Polar Coordinates . . . . . . . . . . . . . . . . . . . . . . . 235 10.2 Slopes in polar coordinates . . . . . . . . . . . . . . . . . . . 239 10.3 Areas in polar coordinates . . . . . . . . . . . . . . . . . . . 241 10.4 Parametric Equations . . . . . . . . . . . . . . . . . . . . . . 245 10.5 Calculus with Parametric Equations . . . . . . . . . . . . . . 248 Contents ix 11 Sequences and Series 253 11.1 Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254 11.2 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260 11.3 The Integral Test . . . . . . . . . . . . . . . . . . . . . . . . 264 11.4 Alternating Series . . . . . . . . . . . . . . . . . . . . . . . . 269 11.5 Comparison Tests . . . . . . . . . . . . . . . . . . . . . . . . 271 11.6 Absolute Convergence . . . . . . . . . . . . . . . . . . . . . 274 11.7 The Ratio and Root Tests . . . . . . . . . . . . . . . . . . . 276 11.8 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . 279 11.9 Calculus with Power Series . . . . . . . . . . . . . . . . . . . 282 11.10 Taylor Series . . . . . . . . . . . . . . . . . . . . . . . . . . 283 11.11 Taylor’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 287 11.12 Additional exercises . . . . . . . . . . . . . . . . . . . . . . . 291 [Show More]
Last updated: 2 years ago
Preview 1 out of 328 pages
Buy this document to get the full access instantly
Instant Download Access after purchase
Buy NowInstant download
We Accept:
Can't find what you want? Try our AI powered Search
Connected school, study & course
About the document
Uploaded On
Sep 02, 2021
Number of pages
328
Written in
This document has been written for:
Uploaded
Sep 02, 2021
Downloads
0
Views
94
In Scholarfriends, a student can earn by offering help to other student. Students can help other students with materials by upploading their notes and earn money.
We're available through e-mail, Twitter, Facebook, and live chat.
FAQ
Questions? Leave a message!
Copyright © Scholarfriends · High quality services·