Engineering > QUESTIONS & ANSWERS > ISYE 6501 Week 6 Homework Latest Update (All)

ISYE 6501 Week 6 Homework Latest Update

Document Content and Description Below

Week 6 Homework Question 9.1 Using the same crime data set as in Question 8.2, apply Principal Component Analysis and then create a regression model using the first few principal components. Specif... y your new model in terms of the original variables (not the principal components), and compare its quality to that of your solution to Question 8.2. You can use the R function prcomp for PCA. Note that to first scale the data, you can include scale. = TRUE to scale as part of the PCA function. Don’t forget that, to make a prediction for the new city, you’ll need to unscale the coefficients (i.e., do the scaling calculation in reverse! require("knitr") ## Loading required package: knitr opts_knit$set(root.dir = "~/Desktop/GT OMSA/ISYE 6501/Wk6") Setting up the environment rm(list=ls()) set.seed(1) library(MASS) library(reshape2) library(ggplot2) library(Hmisc) ## Loading required package: lattice ## Loading required package: survival ## Loading required package: Formula ## ## Attaching package: 'Hmisc' ## The following objects are masked from 'package:base': ## ## format.pval, units library(dplyr) ## ## Attaching package: 'dplyr' ## The following objects are masked from 'package:Hmisc': ## ## src, summarize ## The following object is masked from 'package:MASS': ## ## select ## The following objects are masked from 'package:stats': ## ## filter, lag ## The following objects are masked from 'package:base': ## ## intersect, setdiff, setequal, union 1 library(DAAG) ## ## Attaching package: 'DAAG' ## The following object is masked from 'package:survival': ## ## lung ## The following object is masked from 'package:MASS': ## ## hills crime <- read.table("uscrime.txt", header = TRUE) head(crime) ## M So Ed Po1 Po2 LF M.F Pop NW U1 U2 Wealth Ineq ## 1 15.1 1 9.1 5.8 5.6 0.510 95.0 33 30.1 0.108 4.1 3940 26.1 ## 2 14.3 0 11.3 10.3 9.5 0.583 101.2 13 10.2 0.096 3.6 5570 19.4 ## 3 14.2 1 8.9 4.5 4.4 0.533 96.9 18 21.9 0.094 3.3 3180 25.0 ## 4 13.6 0 12.1 14.9 14.1 0.577 99.4 157 8.0 0.102 3.9 6730 16.7 ## 5 14.1 0 12.1 10.9 10.1 0.591 98.5 18 3.0 0.091 2.0 5780 17.4 ## 6 12.1 0 11.0 11.8 11.5 0.547 96.4 25 4.4 0.084 2.9 6890 12.6 ## Prob Time Crime ## 1 0.084602 26.2011 791 ## 2 0.029599 25.2999 1635 ## 3 0.083401 24.3006 578 ## 4 0.015801 29.9012 1969 ## 5 0.041399 21.2998 1234 ## 6 0.034201 20.9995 682 Reading in and viewing the data crime <- read.table("uscrime.txt", header = TRUE) head(crime) ## M So Ed Po1 Po2 LF M.F Pop NW U1 U2 Wealth Ineq ## 1 15.1 1 9.1 5.8 5.6 0.510 95.0 33 30.1 0.108 4.1 3940 26.1 ## 2 14.3 0 11.3 10.3 9.5 0.583 101.2 13 10.2 0.096 3.6 5570 19.4 ## 3 14.2 1 8.9 4.5 4.4 0.533 96.9 18 21.9 0.094 3.3 3180 25.0 ## 4 13.6 0 12.1 14.9 14.1 0.577 99.4 157 8.0 0.102 3.9 6730 16.7 ## 5 14.1 0 12.1 10.9 10.1 0.591 98.5 18 3.0 0.091 2.0 5780 17.4 ## 6 12.1 0 11.0 11.8 11.5 0.547 96.4 25 4.4 0.084 2.9 6890 12.6 ## Prob Time Crime ## 1 0.084602 26.2011 791 ## 2 0.029599 25.2999 1635 ## 3 0.083401 24.3006 578 ## 4 0.015801 29.9012 1969 ## 5 0.041399 21.2998 1234 ## 6 0.034201 20.9995 682 Variable “So” is binary, as this doesnt make sense in a PCA model i am removing it. crime1 <- crime[-2] head(crime1) ## M Ed Po1 Po2 LF M.F Pop NW U1 U2 Wealth Ineq Prob ## 1 15.1 9.1 5.8 5.6 0.510 95.0 33 30.1 0.108 4.1 3940 26.1 0.084602 2 ## 2 14.3 11.3 10.3 9.5 0.583 101.2 13 10.2 0.096 3.6 5570 19.4 0.029599 ## 3 14.2 8.9 4.5 4.4 0.533 96.9 18 21.9 0.094 3.3 3180 25.0 0.083401 ## 4 13.6 12.1 14.9 14.1 0.577 99.4 157 8.0 0.102 3.9 6730 16.7 0.015801 ## 5 14.1 12.1 10.9 10.1 0.591 98.5 18 3.0 0.091 2.0 5780 17.4 0.041399 ## 6 12.1 11.0 11.8 11.5 0.547 96.4 25 4.4 0.084 2.9 6890 12.6 0.034201 ## Time Crime ## 1 26.2011 791 ## 2 25.2999 1635 ## 3 24.3006 578 ## 4 29.9012 1969 ## 5 21.2998 1234 ## 6 20.9995 682 Running the PCA model based on the crime data pca <- prcomp(crime1[,1:15], scale = TRUE) Summarizing and plotting the PCA summary(pca) ## Importance of components: ## PC1 PC2 PC3 PC4 PC5 PC6 PC7 ## Standard deviation 2.3802 1.6756 1.4202 1.16749 1.03667 0.74864 0.5988 ## Proportion of Variance 0.3777 0.1872 0.1345 0.09087 0.07165 0.03736 0.0239 ## Cumulative Proportion 0.3777 0.5649 0.6993 0.79020 0.86185 0.89921 0.9231 ## PC8 PC9 PC10 PC11 PC12 PC13 ## Standard deviation 0.55069 0.48478 0.44375 0.42652 0.32674 0.26644 ## Proportion of Variance 0.02022 0.01567 0.01313 0.01213 0.00712 0.00473 ## Cumulative Proportion 0.94334 0.95900 0.97213 0.98426 0.99138 0.99611 ## PC14 PC15 ## Standard deviation 0.2324 0.06595 ## Proportion of Variance 0.0036 0.00029 ## Cumulative Proportion 0.9997 1.00000 [Show More]

Last updated: 2 years ago

Preview 1 out of 11 pages

Buy Now

Instant download

We Accept:

We Accept
document-preview

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

We Accept

Reviews( 0 )

$9.00

Buy Now

We Accept:

We Accept

Instant download

Can't find what you want? Try our AI powered Search

158
0

Document information


Connected school, study & course


About the document


Uploaded On

May 19, 2022

Number of pages

11

Written in

Seller


seller-icon
Nutmegs

Member since 3 years

619 Documents Sold

Reviews Received
77
14
8
2
21
Additional information

This document has been written for:

Uploaded

May 19, 2022

Downloads

 0

Views

 158

Document Keyword Tags


$9.00
What is Scholarfriends

In Scholarfriends, a student can earn by offering help to other student. Students can help other students with materials by upploading their notes and earn money.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·