Data Mining > eBook-PDF > Scaling Machine Learning with Spark: Distributed ML with MLlib, TensorFlow, and PyTorch 1st Edition (All)
Get up to speed on Apache Spark, the popular engine for large-scale data processing, including machine learning and analytics. If you're looking to expand your skill set or advance your career in scal... able machine learning with MLlib, distributed PyTorch, and distributed TensorFlow, this practical guide is for you. Using Spark as your main data processing platform, you'll discover several open source technologies designed and built for enriching Spark's ML capabilities. Scaling Machine Learning with Spark examines various technologies for building end-to-end distributed ML workflows based on the Apache Spark ecosystem with Spark MLlib, MLFlow, TensorFlow, PyTorch, and Petastorm. This book shows you when to use each technology and why. If you're a data scientist working with machine learning, you'll learn how to: Build practical distributed machine learning workflows, including feature engineering and data formats Extend deep learning functionalities beyond Spark by bridging into distributed TensorFlow and PyTorch Manage your machine learning experiment lifecycle with MLFlow Use Petastorm as a storage layer for bridging data from Spark into TensorFlow and PyTorch Use machine learning terminology to understand distribution strategies [Show More]
Last updated: 2 years ago
Preview 1 out of 179 pages
Buy this document to get the full access instantly
Instant Download Access after purchase
Buy NowInstant download
We Accept:
Can't find what you want? Try our AI powered Search
Connected school, study & course
About the document
Uploaded On
Oct 04, 2022
Number of pages
179
Written in
This document has been written for:
Uploaded
Oct 04, 2022
Downloads
0
Views
16
In Scholarfriends, a student can earn by offering help to other student. Students can help other students with materials by upploading their notes and earn money.
We're available through e-mail, Twitter, Facebook, and live chat.
FAQ
Questions? Leave a message!
Copyright © Scholarfriends · High quality services·