A-level
MATHEMATICS
Paper 2
Wednesday 10 June 2020 Afternoon Time allowed: 2 hours
Materials
l You must have the AQA Formulae for A‑level Mathematics booklet.
l You should have a graphical or scientific calculator
...
A-level
MATHEMATICS
Paper 2
Wednesday 10 June 2020 Afternoon Time allowed: 2 hours
Materials
l You must have the AQA Formulae for A‑level Mathematics booklet.
l You should have a graphical or scientific calculator that meets the
requirements of the specification.
Instructions
l Use black ink or black ball‑point pen. Pencil should only be used for drawing.
l Fill in the boxes at the top of this page.
l Answer all questions.
l You must answer each question in the space provided for that question.
If you need extra space for your answer(s), use the lined pages at the end
of this book. Write the question number against your answer(s).
l Show all necessary working; otherwise marks for method may be lost.
l Do all rough work in this book. Cross through any work that you do not want
to be marked.
Information
l The marks for questions are shown in brackets.
l The maximum mark for this paper is 100.
Advice
l Unless stated otherwise, you may quote formulae, without proof, from the
booklet.
l You do not necessarily need to use all the space provided.
Please write clearly in block capitals.
Centre number Candidate number
Surname ________________________________________________________________________
Forename(s) ________________________________________________________________________
Candidate signature ________________________________________________________________________
For Examiner’s Use
Question Mark
123456789
10
11
12
13
14
15
16
17
18
19
TOTAL
I declare this is my own work.2
Section A
Answer all questions in the spaces provided.
1 Which one of these functions is decreasing for all real values of x?
Circle your answer.
[1 mark]
f (x) ¼ ex f (x) ¼ e1x f (x) ¼ ex1 f (x) ¼ ex
2 Which one of the following equations has no real solutions?
Tick (3) one box.
[1 mark]
cot x ¼ 0
ln x ¼ 0
jx þ 1j ¼ 0
sec x ¼ 0
Jun20/7357/2
Do not write
outside the
box
(02)3
3 Find the coefficient of x2 in the binomial expansion of 2x 3
x 8
[3 marks]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
Turn over for the next question
Do not write
outside the
box
Jun20/7357/2
Turn over s
(03)4
4 Using small angle approximations, show that for small, non-zero, values of x
x tan 5x
cos 4x 1 A
where A is a constant to be determined.
[4 marks]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
Do not write
outside the
box
(04) Jun20/7357/2DO NOT WRITE ON THIS PAGE
ANSWER IN THE SPACES PROVIDED
5
Turn over for the next question
Do not write
outside the
box
Jun20/7357/2
Turn over s
(05)6
5 Use integration by substitution to show that
ð6 1
4
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p4x þ 1 dx ¼ 875
12
Fully justify your answer
[Show More]