A-level
MATHEMATICS
Paper 3
Friday 12 June 2020 Afternoon Time allowed: 2 hours
Materials
l You must have the AQA Formulae for A‑level Mathematics booklet.
l You should have a graphical or scientific calculator tha
...
A-level
MATHEMATICS
Paper 3
Friday 12 June 2020 Afternoon Time allowed: 2 hours
Materials
l You must have the AQA Formulae for A‑level Mathematics booklet.
l You should have a graphical or scientific calculator that meets the
requirements of the specification.
Instructions
l Use black ink or black ball‑point pen. Pencil should only be used for drawing.
l Fill in the boxes at the top of this page.
l Answer all questions.
l You must answer each question in the space provided for that question.
If you need extra space for your answer(s), use the lined pages at the end
of this book. Write the question number against your answer(s).
l Show all necessary working; otherwise marks for method may be lost.
l Do all rough work in this book. Cross through any work that you do not want
to be marked.
Information
l The marks for questions are shown in brackets.
l The maximum mark for this paper is 100.
Advice
l Unless stated otherwise, you may quote formulae, without proof, from the
booklet.
l You do not necessarily need to use all the space provided.
Please write clearly in block capitals.
Centre number Candidate number
Surname ________________________________________________________________________
Forename(s) ________________________________________________________________________
Candidate signature ________________________________________________________________________
For Examiner’s Use
Question Mark
123456789
10
11
12
13
14
15
16
17
18
TOTAL
I declare this is my own work.2
Section A
Answer all questions in the spaces provided.
1 Given that
ð010 f (x) dx ¼ 7
deduce the value of
ð010f (x) þ 1 dx
Circle your answer.
[1 mark]
3 7 8 17
2 Given that
6 cos y þ 8 sin y R cos (y þ a)
find the value of R.
Circle your answer.
[1 mark]
6 8 10 14
Jun20/7357/3
Do not write
outside the
box
(02)3
3 Determine which one of these graphs does not represent y as a function of x.
Tick (3) one box.
[1 mark]
x
y
x
y
x
y
x
y
Do not write
outside the
box
Jun20/7357/3
Turn over s
(03)4
4 p(x) ¼ 4x3 15x2 48x 36
4 (a) Use the factor theorem to prove that x 6 is a factor of p(x).
[2 marks]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
4 (b) (i) Prove that the graph of y ¼ p(x) intersects the x-axis at exactly one point.
[4 marks]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
Do not write
outside the
box
(04) Jun20/7357/35
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
4 (b) (ii) State the coordinates of this point of intersection.
[1 mark]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
Turn over for the next question
Do not write
outside the
box
Jun20/7357/3
Turn over s
(05)6
5 The number of radioactive atoms, N, in a sample of a sodium isotope after time
t hours can be modelled by
N ¼ N 0ekt
where N 0 is the initial number of radioactive atoms in the sample and k is a positive
constant.
The model remains valid for large numbers of atoms.
5 (a) It takes 15.9 hours for half of the sodium atoms to decay.
Determine the number of days required for at least 90% of the number of atoms in the
original sample to decay.
[5 marks]
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
_____________________________________________________________________________________
Do not write
outside the
box
(06) Jun20/7357/37
5 (b) Find the percentage of the atoms remaining after the first week.
Give your answer to two significant figures
[Show More]