Mathematics  >  QUESTION PAPER & MARK SCHEME  >  Pearson Edexcel Level 3 GCE. Further Mathematics Advanced PAPER 2: Core Pure Mathematics 2 (All)

Pearson Edexcel Level 3 GCE. Further Mathematics Advanced PAPER 2: Core Pure Mathematics 2

Document Content and Description Below

1. Given that 1 2 3 cos isin 3 3 2 cos isin 12 12 π π z π π z       = +                  = −     ...        (a) write down the exact value of (i) | z1z2 | (ii) arg(z1z2) (2) Given that w = z 1z2 and that arg(wn) = 0, where n  + (b) determine (i) the smallest positive value of n (ii) the corresponding value of | wn | (3) _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________*P66797A0332* Turn over 3 Question 1 continued _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ (Total for Question 1 is 5 marks)4 *P66797A0432* 2. A = 4 2 5 3  −    The matrix A represents the linear transformation M. Prove that, for the linear transformation M, there are no invariant line [Show More]

Last updated: 3 years ago

Preview 1 out of 56 pages

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)
Preview image of Pearson Edexcel Level 3 GCE. Further Mathematics Advanced PAPER 2: Core Pure Mathematics 2 document

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Reviews( 0 )

$13.00

Buy Now

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Instant download

Can't find what you want? Try our AI powered Search

175
0

Document information


Connected school, study & course


About the document


Uploaded On

Apr 10, 2022

Number of pages

56

Written in

All

Seller


Profile illustration for SupremeDocs
SupremeDocs

Member since 3 years

25 Documents Sold

Reviews Received
1
0
0
1
1
Additional information

This document has been written for:

Uploaded

Apr 10, 2022

Downloads

 0

Views

 175

Document Keyword Tags


$13.00
What is Scholarfriends

Scholarfriends.com Online Platform by Browsegrades Inc. 651N South Broad St, Middletown DE. United States.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·