Mathematics  >  GCSE QUESTION PAPER  >  Pearson Edexcel Level 3 GCE Mathematics Advanced Subsidiary PAPER 1: Pure Mathematics 8MA0/01 (All)

Pearson Edexcel Level 3 GCE Mathematics Advanced Subsidiary PAPER 1: Pure Mathematics 8MA0/01

Document Content and Description Below

Pearson Edexcel Level 3 GCE Mathematics Advanced Subsidiary PAPER 1: Pure Mathematics 8MA0/011. Find 8 3 2 x3 5 x − + x   ∫ d giving your answer in simplest form. (4) ... _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ *P69201A0348* Turn over 3 Question 1 continued _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ (Total for Question 1 is 4 marks)4 *P69201A0448*  2. f(x) = 2x3 + 5x2 + 2x + 15 (a) Use the factor theorem to show that (x + 3) is a factor of f(x). (2) (b) Find the constants a, b and c such that f(x) = (x + 3)(ax2 + bx + c) (2) (c) Hence show that f(x) = 0 has only one real root. (2) (d) Write down the real root of the equation f(x – 5) = 0 (1) _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ ___________________________________ [Show More]

Last updated: 3 years ago

Preview 1 out of 48 pages

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)
Preview image of Pearson Edexcel Level 3 GCE  Mathematics Advanced Subsidiary PAPER 1: Pure Mathematics 8MA0/01 document

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Reviews( 0 )

$10.00

Buy Now

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Instant download

Can't find what you want? Try our AI powered Search

202
0

Document information


Connected school, study & course


About the document


Uploaded On

Sep 24, 2022

Number of pages

48

Written in

All

Seller


Profile illustration for A-LEVEL GURU
A-LEVEL GURU

Member since 3 years

20 Documents Sold

Reviews Received
1
0
0
0
0
Additional information

This document has been written for:

Uploaded

Sep 24, 2022

Downloads

 0

Views

 202

Document Keyword Tags


$10.00
What is Scholarfriends

Scholarfriends.com Online Platform by Browsegrades Inc. 651N South Broad St, Middletown DE. United States.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·