Contents
PREFACE vii
Part 1. MATRICES AND LINEAR EQUATIONS 1
Chapter 1. SYSTEMS OF LINEAR EQUATIONS 3
1.1. Background 3
1.2. Exercises 4
1.3. Problems 7
1.4. Answers to Odd-Numbered Exercises 8
Chapter 2. ARITHME
...
Contents
PREFACE vii
Part 1. MATRICES AND LINEAR EQUATIONS 1
Chapter 1. SYSTEMS OF LINEAR EQUATIONS 3
1.1. Background 3
1.2. Exercises 4
1.3. Problems 7
1.4. Answers to Odd-Numbered Exercises 8
Chapter 2. ARITHMETIC OF MATRICES 9
2.1. Background 9
2.2. Exercises 10
2.3. Problems 12
2.4. Answers to Odd-Numbered Exercises 14
Chapter 3. ELEMENTARY MATRICES; DETERMINANTS 15
3.1. Background 15
3.2. Exercises 17
3.3. Problems 22
3.4. Answers to Odd-Numbered Exercises 23
Chapter 4. VECTOR GEOMETRY IN R
n 25
4.1. Background 25
4.2. Exercises 26
4.3. Problems 28
4.4. Answers to Odd-Numbered Exercises 29
Part 2. VECTOR SPACES 31
Chapter 5. VECTOR SPACES 33
5.1. Background 33
5.2. Exercises 34
5.3. Problems 37
5.4. Answers to Odd-Numbered Exercises 38
Chapter 6. SUBSPACES 39
6.1. Background 39
6.2. Exercises 40
6.3. Problems 44
6.4. Answers to Odd-Numbered Exercises 45
Chapter 7. LINEAR INDEPENDENCE 47
7.1. Background 47
7.2. Exercises 49
iii
iv CONTENTS
7.3. Problems 51
7.4. Answers to Odd-Numbered Exercises 53
Chapter 8. BASIS FOR A VECTOR SPACE 55
8.1. Background 55
8.2. Exercises 56
8.3. Problems 57
8.4. Answers to Odd-Numbered Exercises 58
Part 3. LINEAR MAPS BETWEEN VECTOR SPACES 59
Chapter 9. LINEARITY 61
9.1. Background 61
9.2. Exercises 63
9.3. Problems 67
9.4. Answers to Odd-Numbered Exercises 70
Chapter 10. LINEAR MAPS BETWEEN EUCLIDEAN SPACES 71
10.1. Background 71
10.2. Exercises 72
10.3. Problems 74
10.4. Answers to Odd-Numbered Exercises 75
Chapter 11. PROJECTION OPERATORS 77
11.1. Background 77
11.2. Exercises 78
11.3. Problems 79
11.4. Answers to Odd-Numbered Exercises 80
Part 4. SPECTRAL THEORY OF VECTOR SPACES 81
Chapter 12. EIGENVALUES AND EIGENVECTORS 83
12.1. Background 83
12.2. Exercises 84
12.3. Problems 85
12.4. Answers to Odd-Numbered Exercises 86
Chapter 13. DIAGONALIZATION OF MATRICES 87
13.1. Background 87
13.2. Exercises 89
13.3. Problems 91
13.4. Answers to Odd-Numbered Exercises 92
Chapter 14. SPECTRAL THEOREM FOR VECTOR SPACES 93
14.1. Background 93
14.2. Exercises 94
14.3. Answers to Odd-Numbered Exercises 96
Chapter 15. SOME APPLICATIONS OF THE SPECTRAL THEOREM 97
15.1. Background 97
15.2. Exercises 98
15.3. Problems 102
15.4. Answers to Odd-Numbered Exercises 103
Chapter 16. EVERY OPERATOR IS DIAGONALIZABLE PLUS NILPOTENT 105
CONTENTS v
16.1. Background 105
16.2. Exercises 106
16.3. Problems 110
16.4. Answers to Odd-Numbered Exercises 111
Part 5. THE GEOMETRY OF INNER PRODUCT SPACES 113
Chapter 17. COMPLEX ARITHMETIC 115
17.1. Background 115
17.2. Exercises 116
17.3. Problems 118
17.4. Answers to Odd-Numbered Exercises 119
Chapter 18. REAL AND COMPLEX INNER PRODUCT SPACES 121
18.1. Background 121
18.2. Exercises 123
18.3. Problems 125
18.4. Answers to Odd-Numbered Exercises 126
Chapter 19. ORTHONORMAL SETS OF VECTORS 127
19.1. Background 127
19.2. Exercises 128
19.3. Problems 129
19.4. Answers to Odd-Numbered Exercises 131
Chapter 20. QUADRATIC FORMS 133
20.1. Background 133
20.2. Exercises 134
20.3. Problems 136
20.4. Answers to Odd-Numbered Exercises 137
Chapter 21. OPTIMIZATION 139
21.1. Background 139
21.2. Exercises 140
21.3. Problems 141
21.4. Answers to Odd-Numbered Exercises 142
Part 6. ADJOINT OPERATORS 143
Chapter 22. ADJOINTS AND TRANSPOSES 145
22.1. Background 145
22.2. Exercises 146
22.3. Problems 147
22.4. Answers to Odd-Numbered Exercises 148
Chapter 23. THE FOUR FUNDAMENTAL SUBSPACES 149
23.1. Background 149
23.2. Exercises 151
23.3. Problems 155
23.4. Answers to Odd-Numbered Exercises 157
Chapter 24. ORTHOGONAL PROJECTIONS 159
24.1. Background 159
24.2. Exercises 160
vi CONTENTS
24.3. Problems 163
24.4. Answers to Odd-Numbered Exercises 164
Chapter 25. LEAST SQUARES APPROXIMATION 165
25.1. Background 165
25.2. Exercises 166
25.3. Problems 167
25.4. Answers to Odd-Numbered Exercises 168
Part 7. SPECTRAL THEORY OF INNER PRODUCT SPACES 169
Chapter 26. SPECTRAL THEOREM FOR REAL INNER PRODUCT SPACES 171
26.1. Background 171
26.2. Exercises 172
26.3. Problem 174
26.4. Answers to the Odd-Numbered Exercise 175
Chapter 27. SPECTRAL THEOREM FOR COMPLEX INNER PRODUCT SPACES 177
27.1. Background 177
27.2. Exercises 178
27.3. Problems 181
27.4. Answers to Odd-Numbered Exercises 182
Bibliography 183
Index 185
[Show More]