Mathematics > SOLUTIONS MANUAL > Rutgers UniversityCSE 345ch06-9244-vectorist (All)

Rutgers UniversityCSE 345ch06-9244-vectorist

Document Content and Description Below

Solutions to Additional Problems 6.26. A signal x(t) has Laplace transform X(s) as given below. Plot the poles and zeros in the s-plane and determine the Fourier transform of x(t) without inverting ... X(s). (a) X(s) = s2s+5 2+1 s+6 X(s) = (s + j)(s − j) (s +3)(s +2) zeros at: ±j poles at: −3, −2 X(jω) = X(s)|s=jω = −ω2 + 1 −ω2 + 5jω + 6 Pole−Zero Map Real Axis Imag Axis −3.5 −3 −2.5 −2 −1.5 −1 −0.5 0 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 Figure P6.26. (a) Pole-Zero Plot of X(s) (b) X(s) = s2s+2−s+1 1 X(s) = (s +1)(s − 1) (s + 0.5 − j3 4)(s + 0.5 + j3 4) zeros at: ±1 1poles at: −1 ± j√3 2 X(jω) = X(s)|s=jω = −ω2 − 1 −ω2 + jω + 1 Pole−Zero Map Real Axis Imag Axis −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 Figure P6.26. (b) Pole-Zero Plot of X(s) (c) X(s) = s−14 + s−22 X(s) = 3(s − 10 3 ) (s − 4)(s − 2) zero at: 10 3 poles at: 4, 2 X(jω) = X(s)|s=jω = 1 jω − 4 + 2 jω − 2 2Pole−Zero Map Real Axis Imag Axis 0 0.5 1 1.5 2 2.5 3 3.5 4 −1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1 Figure P6.26. (b) Pole-Zero Plot of X(s) 6.27. Determine the bilateral Laplace transform and ROC for the following signals: (a) x(t) = e−tu(t +2) X(s) = −∞ ∞ x(t)e−st dt = −∞ ∞ e−tu(t +2)e−st dt = −∞2 e−t(1+s) dt = e2(1+s) 1 + s ROC: Re(s) > -1 (b) x(t) = u(−t +3) X(s) = −∞ 3 e−st dt = −e−3s s ROC: Re(s) < 0 3(c) x(t) = δ(t +1) X(s) = −∞ ∞ δ(t +1)e−st dt = es ROC: all s (d) x(t) = sin(t)u(t) X(s) = 0∞ 21j ejt − e−jt e−st dt = 0∞ 21j et(j−s) dt − 0∞ 21j e−t(j+s) dt = 12j j−−1s − j +1 s = 1 (1 + s2) ROC: Re(s) > 0 6.28. Determine the unilateral Laplace transform of the following signals using the defining equation: (a) x(t) = u(t − 2) X(s) = 0−∞ x(t)e−st dt = 0−∞ u(t − 2)e−st dt = 2∞ e−st dt = e−2s s (b) x(t) = u(t +2) X(s) = 0−∞ u(t +2)e−st dt = 0−∞ e−st dt = 1 s (c) x(t) = e−2tu(t +1) 4X(s) = 0−∞ e−2tu(t +1)e−st dt = 0−∞ e−t(s+2) dt = 1 s + 2 (d) x(t) = e2tu(−t +2) X(s) = 0−∞ e2tu(−t +2)e−st dt = 0−2 et(2−s) dt = e2(2−s) − 1 2 − s (e) x(t) = sin(ωot) X(s) = 0−∞ 21j ejωot − e−jωot e−st dt = 12j 0−∞ et(jωo−s) dt − 0−∞ e−t(jωo+s) dt = 12j jω−o 1− s − jωo1+ s = ωo s2 + ω2 o (f) x(t) = u(t) − u(t − 2) X(s) = 0−2 e−st dt = 1 − e−2s s (g) x(t) = sin(πt), 0 < t < 1 0, otherwise X(s) = 0−1 21j ejπt − e−jπt e−st dt = π(1 + e−s) s2 + π2 56.29. Use the basic Laplace transforms and the Laplace transform properties given in Tables D.1 and D.2 to determine the unilateral Laplace transform of the following signals: (a) x(t) = dt d {te−tu(t)} a(t) = te−tu(t) ←−−−→ Lu A(s) = 1 (s +1)2 x(t) = d dta(t) Lu ←−−−→ X(s) = s (s +1)2 (b) x(t) = tu(t) ∗ cos(2πt)u(t) a(t) = tu(t) Lu ←−−−→ A(s) = 1 s2 b(t) = cos(2πt)u(t) Lu ←−−−→ s s2 + 4π2 x(t) = a(t) ∗ b(t) Lu ←−−−→ X(s) = A(s)B(s) X(s) = 1 s2(s2 + 4π2) (c) x(t) = t3u(t) a(t) = tu(t) Lu ←−−−→ A(s) = 1 s2 b(t) = −ta(t) Lu ←−−−→ B(s) = d dsA(s) = −s32 x(t) = −tb(t) Lu ←−−−→ X(s) = d dsB(s) = s64 (d) x(t) = u(t − 1) ∗ e−2tu(t − 1) a(t) = u(t) Lu ←−−−→ A(s) = 1 s b(t) = a(t − 1) Lu ←−−−→ B(s) = e−s s c(t) = e−2tu(t) ←−−−→ Lu C(s) = 1 s + 2 d(t) = e−2c(t − 1) ←−−−→ Lu D(s) = e−(s+2) s + 2 x(t) = b(t) ∗ d(t) Lu ←−−−→ X(s) = B(s)D(s) X(s) = e−2(s+1) s(s +2) 6(e) x(t) = 0t e−3τ cos(2τ)dτ a(t) = e−3t cos(2t)u(t) ←−−−→ Lu A(s) = s + 3 (s +3)2 + 4 −∞ t a(τ)dτ ←−−−→ Lu 1s −∞ 0− a(τ)dτ + A(ss) X(s) = s + 3 s((s +3)2 +4) (f) x(t) = t dt d (e−t cos(t)u(t)) a(t) = e−t cos(t)u(t) ←−−−→ Lu A(s) = s + 1 (s +1)2 + 1 b(t) = d dta(t) Lu ←−−−→ B(s) = s(s +1) (s +1)2 + 1 x(t) = tb(t) Lu ←−−−→ X(s) = − d dsB(s) X(s) = −s2 − 4s − 2 (s2 + 2s +2)2 6.30. Use the basic Laplace transforms and the Laplace transform properties given in Tables D.1 and D.2 to determine the time signals corresponding to the following unilateral Laplace transforms: (a) X(s) = s+2 1 s+3 1 X(s) = 1 s + 2 + −1 s + 3 x(t) = e−2t − e−3t u(t) (b) X(s) = e−2s ds d (s+1) 1 2 A(s) = 1 (s +1)2 Lu ←−−−→ a(t) = te−tu(t) B(s) = d dsA(s) Lu ←−−−→ b(t) = −ta(t) = −t2e−tu(t) X(s) = e−2sB(s) ←−−−→ Lu x(t) = b(t − 2) = −(t − 2)2e−(t−2)u(t − 2) (c) X(s) = (2s+1) 1 2+4 B(s a ) Lu ←−−−→ ab(at) 1 (s +1)2 + 4 Lu ←−−−→ 12 e−t sin(2t)u(t) x(t) = 1 4 e−0.5t sin(t)u(t) 7(d) X(s) = s ds d22 s21+9 + s+3 1 A(s) = 1 s2 + 9 Lu ←−−−→ a(t) = 1 3 sin(3t)u(t) B(s) = d dsA(s) Lu ←−−−→ b(t) = −ta(t) = − t 3 sin(3t)u(t) C(s) = d dsB(s) Lu ←−−−→ c(t) = −tb(t) = t2 3 sin(3t)u(t) D(s) = sC(s) Lu ←−−−→ d(t) = d dtc(t) − c(0−) = 23t sin(3t)u(t) + t2 cos(3t)u(t) E(s) = 1 s + 3 Lu ←−−−→ e(t) = e−3tu(t) x(t) = e(t) + d(t) = e−3t + 23t sin(3t) + t2 cos(3t) u(t) 6.31. Given the transform pair cos(2t)u(t) Lu ←−−−→ X(s), determine the time signals corresponding to the following Laplace transforms: (a) (s +1)X(s) sX(s) + X(s) Lu ←−−−→ d dtx(t) + x(t) = [−2 sin(2t) +cos(2t)] u(t) (b) X(3s) X(s a ) Lu ←−−−→ ax(at) x(t) = 1 3 cos(2 3 t)u(t) (c) X(s +2) X(s +2) Lu ←−−−→ e−2tx(t) x(t) = e−2t cos(2t)u(t) (d) s−2X(s) B(s) = 1 s X(s) Lu ←−−−→ −∞ t x(τ)dτ Lu ←−−−→ −∞ t cos(2τ)u(τ)dτ Lu ←−−−→ 0t cos(2τ)dτ 8B(s) Lu ←−−−→ 12 sin(2t) 1 s B(s) Lu ←−−−→ 0t 1 2 sin(2τ)dτ Lu ←−−−→ 1 − cos(2t) 4 u(t) (e) ds d e−3sX(s) A(s) = e−3sX(s) ←−−−→ Lu a(t) = x(t − 3) = cos(2(t − 3))u(t − 3) B(s) = d dsA(s) Lu ←−−−→ b(t) = −ta(t) = −t cos(2(t − 3))u(t − 3) 6.32. Given the transform pair x(t) Lu ←−−−→ 2s s2+2, where x(t) = 0 for t < 0, determine the Laplace transform of the following time signals: (a) x(3t) x(3t) Lu ←−−−→ 13 X(s 3 ) X(s) = 23s (3s)2 + 2 = 6s s2 +18 (b) x(t − 2) x(t − 2) Lu ←−−−→ e−2sX(s) = e−2s 2s s2 + 2 (c) x(t) ∗ dt d x(t) b(t) = d dtx(t) Lu ←−−−→ B(s) = sX(s) y(t) = x(t) ∗ b(t) Lu ←−−−→ Y (s) = B(s)X(s) = s[X(s)]2 Y (s) = s s22+ 2 s 2 (d) e−tx(t) e−tx(t) ←−−−→ Lu X(s +1) = 2(s +1) (s +1)2 + 2 9(e) 2tx(t) 2tx(t) Lu ←−−−→ −2 d ds X(s) = (4s2s2+2) − 82 (f) 0t x(3τ)dτ 0t x(3τ)dτ ←−−−→ Lu Y (s) = X3(s3s) Y (s) = 2 s2 +18 6.33. Use the s-domain shift property and the transform pair e−atu(t) ←−−−→ Lu s+1a to derive the unilateral Laplace transform of x(t) = e−at cos(ω1t)u(t). e−atu(t) ←−−−→ Lu 1 s + a x(t) = e−at cos(ω1t)u(t) = 12 e−at ejω1t + e−jω1t u(t) Using the s-domain shift property: X(s) = 1 2 (s − jω11) + a + (s + jω11) + a = 12 2(s + a) (s + a)2 + ω12 = (s + a) (s + a)2 + ω12 6.34. Prove the following properties of the unilateral Laplace transform: (a) Linearity z(t) = ax(t) + by(t) Z(s) = 0∞ z(t)e−st dt = 0∞ (ax(t) + by(t)) e−st dt = 0∞ ax(t)e−st dt + 0∞ by(t)e−st dt = a 0∞ x(t)e−st dt + b 0∞ y(t)e−st dt = aX(s) + bY (s) (b) Scaling z(t) = x(at) 10Z(s) = 0∞ x(at)e−st dt = 1 a 0∞ x(τ)e− as τ dτ = 1 a X(s a ) (c) Time shift z(t) = x(t − τ) Z(s) = 0∞ x(t − τ)e−st dt Let m = t − τ Z(s) = −∞τ x(m)e−s(m+τ) dm If x(t − τ)u(t) = x(t − τ)u(t − τ) Z(s) = 0∞ x(m)e−sme−sτ dm = e−sτX(s) (d) s-domain shift z(t) = esotx(t) Z(s) = 0∞ esotx(t)e−st dt = 0∞ x(t)e−(so−s)t dt = X(s − so) (e) Convolution z(t) = x(t) ∗ y(t) = 0∞ x(τ)y(t − τ) dτ; x(t), y(t) causal Z(s) = 0∞ 0∞ x(τ)y(t − τ) dτ e−st dt = 0∞ 0∞ x(τ)y(m) dτ e−sme−sτ dm = 0∞ x(τ)e−sτ dτ 0∞ y(m)e−sm dm = X(s)Y (s) 11(f) Differentiation in the s-domain z(t) = −tx(t) Z(s) = 0∞ −tx(t)e−st dt = 0∞ x(t)ds d (e−st) dt = 0∞ ds d x(t)e−st dt Assume: 0∞(.) dt and ds d (.) are interchangeable. Z(s) = d ds 0∞ x(t)e−st dt Z(s) = d ds X(s) 6.35. Determine the initial value x(0+) given the following Laplace transforms X(s): (a) X(s) = s2+51s−2 x(0+) = lim s→∞ sX(s) = s s2 + 5s − 2 = 0 (b) X(s) = s2+2 s+2 s−3 x(0+) = lim s→∞ sX(s) = s2 + 2s s2 + 2s − 3 = 1 (c) X(s) = e−2s s26+2 s2+s−s2 x(0+) = lim s→∞ sX(s) = e−2s 6s3 + s2 s2 + 2s − 2 = 0 6.36. Determine the final value x(∞) given the following Laplace transforms X(s): (a) X(s) = s22+5 s2+3 s+1 x(∞) = lim s→0 sX(s) = 2s3 + 3s s2 + 5s + 1 = 0 (b) X(s) = s3+2 s+2 s2+s x(∞) = lim s→0 sX(s) = s + 2 s2 + 2s + 1 = 2 12(c) X(s) = e−3s s2(ss+2) 2+12 x(∞) = lim s→0 sX(s) = e−3s 2s2 + 1 (s +2)2 = 14 6.37. Use the method of partial fractions to find the time signals corresponding to the following unilateral Laplace transforms: (a) X(s) = s2+3 s+3 s+2 X(s) = s + 3 s2 + 3s + 2 = A s + 1 + B s + 2 1 = A + B 3 = 2A + B X(s) = 2 s + 1 + −1 s + 2 x(t) = 2e−t − e−2t u(t) (b) X(s) = 2ss22+10 +5ss+6 +11 X(s) = 2s2 +10s +11 s2 + 5s + 6 = 2 − 1 (s +2)(s +3) 1 (s +2)(s +3) = A s + 2 + B s + 3 0 = A + B 1 = 3A + 2B X(s) = 2 − 1 s + 2 + 1 s + 3 x(t) = 2δ(t) + e−3t − e−2t u(t) (c) X(s) = s22+2 s−s1+1 X(s) = 2s − 1 s2 + 2s + 1 = A s + 1 + B (s +1)2 2 = A −1 = A + B x(t) = 2e−t − 3te−t u(t) (d) X(s) = s3+3 5ss+4 2+2s X(s) = 5s + 4 s3 + 3s2 + 2s = A s + B s + 2 + C s + 1 130 = A + B + C 5 = 3A + B + 2C 4 = 2A X(s) = 2 s + −3 s + 2 + 1 s + 1 x(t) = 2 − 3e−2t + e−t u(t) (e) X(s) = (s+2)( ss22−+2 3 s+1) X(s) = s2 − 3 (s +2)(s2 + 2s +1) = A s + 2 + B s + 1 + C (s +1)2 1 = A + B 0 = 2A + 3B + C −3 = A + 2B + 2C X(s) = 1 s + 2 + −2 (s +1)2 x(t) = e−2t − 2te−t u(t) (f) X(s) = s2+2 3s+2 s+10 X(s) = 3s + 2 s2 + 2s +10 = 3(s +1) − 1 (s +1)2 + 32 x(t) = 3e−t cos(3t) − 13e−t sin(3t) u(t) (g) X(s) = (s+2)( 4s2+8 s2+2 s+10 s+5) X(s) = 2 s + 2 + 2(s +1) (s +1)2 + 22 + −2 (s +1)2 + 22 x(t) = 2e−2t + 2e−t cos(2t) − e−t sin(2t) u(t) (h) X(s) = (s+2)( 3s2+10 s2+6 s+10 s+10) X(s) = 3s2 +10s +10 (s +2)(s2 + 6s +10) = A s + 2 + Bs + C s2 + 6s +10 3 = A + B 10 = 6A + 2B + C 10 = 10A + 2C X(s) = 1 s + 2 + 2(s +3) (s +3)2 + 1 − 6 (s +3)2 + 1 x(t) = e−2t + 2e−3t cos(t) − 6e−3t sin(t) u(t) 14(i) X(s) = 2s2+11 s2+5 s+16+ s+6e−2s X(s) = 2s2 +11s +16 + e−2s s2 + 5s + 6 = 2 + s + 4 s2 + 5s + 6 + e−2s s2 + 5s + 6 X(s) = 2 + −1 s + 3 + 2 s + 2 − e−2s 1 s + 3 + e−2s 1 s + 2 x(t) = 2δ(t) + 2e−2t − e−t u(t) + e−2(t−2) − e−3(t−2) u(t − 2) 6.38. Determine the forced and natural responses for the LTI systems described by the following differential equations with the specified input and initial conditions: (a) dt d y(t) + 10y(t) = 10x(t), y(0−) = 1, x(t) = u(t) X(s) = 1 s Y (s)(s + 10) = 10X(s) + y(0−) Y f(s) = 10X(s) s +10 = 10 s(s +10) = 1 s + −1 s +10 yf(t) = 1 − e−10t u(t) Y n(s) = y(0−) s +10 yn(t) = e−10tu(t) (b) dt d22 y(t) + 5 dt d y(t) + 6y(t) = −4x(t) − 3 dt d x(t), y(0−) = −1, dt d y(t) t=0− = 5, x(t) = e−tu(t) Y (s)(s2 + 5s +6) − 5 + s + 5 = (−4 − 3s) 1 s + 1 Y (s) = −1 (s +1)(s +2)(s +3) + s (s +2)(s +3) = Y f(s) + Y n(s) Y f(s) = −0.5 s + 1 + −2 s + 2 + 2.5 s + 3 yf(t) = −0.5e−t − 2e−2t + 2.5e−3t u(t) Y n(s) = −2 s + 2 + 3 s + 3 yn(t) = −2e−2t + 3e−3t u(t) (c) dt d22 y(t) + y(t) = 8x(t), y(0−) = 0, dt d y(t) t=0− = 2, x(t) = e−tu(t) Y (s)(s2 + 1) = 8X(s) + 2 15Y f(s) = 4 s + 1 + 4 s2 + 1 − 4s s2 + 1 yf(t) = 4 e−t +sin(t) − cos(t) u(t) Y n(s) = 2 s2 + 1 yn(t) = 2 sin(t)u(t) (d) dt d22 y(t) + 2 dt d y(t) + 5y(t) = dt d x(t), y(0−) = 2, dt d y(t) t=0− = 0, x(t) = u(t) Y (s)(s2 + 2s +5) = sX(s) + sy(0−) + 2y(0−) Y f(s) = 1 (s +1)2 + 22 yf(t) = 1 2 e−t sin(2t)u(t) Y n(s) = 2(s +2) (s +2)2 + 1 yn(t) = 2e−t cos(t)u(t) 6.39. Use Laplace transform circuit models to determine the current y(t) in the circuit of Fig. P6.39 assuming normalized values R = 1Ω and L = 1 2 H for the specified inputs. The current through the inductor at time t = 0− is 2 A. [Show More]

Last updated: 2 years ago

Preview 1 out of 60 pages

Buy Now

Instant download

We Accept:

We Accept
document-preview

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

We Accept

Reviews( 0 )

$11.00

Buy Now

We Accept:

We Accept

Instant download

Can't find what you want? Try our AI powered Search

88
0

Document information


Connected school, study & course


About the document


Uploaded On

Jul 16, 2021

Number of pages

60

Written in

Seller


seller-icon
Cheryshev

Member since 4 years

102 Documents Sold

Reviews Received
6
4
1
0
1
Additional information

This document has been written for:

Uploaded

Jul 16, 2021

Downloads

 0

Views

 88

Document Keyword Tags


$11.00
What is Scholarfriends

In Scholarfriends, a student can earn by offering help to other student. Students can help other students with materials by upploading their notes and earn money.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·