Database Management > QUESTIONS & ANSWERS > MGT 6203MIDTERM - SOLUTION KEY - PART 2 with All Answers Verified (All)

MGT 6203MIDTERM - SOLUTION KEY - PART 2 with All Answers Verified

Document Content and Description Below

Q21) Please estimate a linear regression model (using the lm function) with Personal as the dependent variable and Room.Board as the independent variable. What are the model’s Rsquared and adjusted... R-squared values? a) 0.00549, 0.048 b) 0.0143, 0.022 c) 0.0398, 0.0385 d) 0.0325, 0.0336 Answer: C (Week 1 Lesson 4) library("ISLR") data("College") summary(lm(College$Personal~College$Room.Board)) ## ## Call: ## lm(formula = College$Personal ~ College$Room.Board) ## ## Residuals: ## Min 1Q Median 3Q Max ## -1153.1 -444.6 -92.3 316.0 5505.2 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 1877.14827 97.64374 19.224 < 2e-16 *** ## College$Room.Board -0.12312 0.02173 -5.666 2.06e-08 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 663.9 on 775 degrees of freedom ## Multiple R-squared: 0.03977, Adjusted R-squared: 0.03853 ## F-statistic: 32.1 on 1 and 775 DF, p-value: 2.065e-08 Q22)Based on the linear-linear regression model in the previous question (with Personal as the dependent variable and Room.Board as the independent variable), fit three nonlinear models using those two variables. Based on their adjusted R-squared values, which one of the four models is most appropriate to use? a) Log-Linear b) Log-Log c) Linear-Linear d) Linear-Log Answer: B (Week 3 lesson 4) summary(lm(log(College$Personal)~College$Room.Board)) ## Call: ## lm(formula = log(College$Personal) ~ College$Room.Board) ## ## Residuals: ## Min 1Q Median 3Q Max ## -1.61024 -0.31235 0.03383 0.31037 1.77383 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 7.485e+00 6.992e-02 107.057 < 2e-16 *** ## College$Room.Board -9.187e-05 1.556e-05 -5.904 5.3e-09 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.4754 on 775 degrees of freedom ## Multiple R-squared: 0.04304, Adjusted R-squared: 0.04181 ## F-statistic: 34.86 on 1 and 775 DF, p-value: 5.303e-09 summary(lm(log(College$Personal)~log(College$Room.Board))) ## ## Call: ## lm(formula = log(College$Personal) ~ log(College$Room.Board)) ## ## Residuals: ## Min 1Q Median 3Q Max ## -1.60098 -0.31047 0.03916 0.30663 1.78574 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 10.47164 0.56140 18.653 < 2e-16 *** ## log(College$Room.Board) -0.40568 0.06722 -6.035 2.46e-09 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.4749 on 775 degrees of freedom ## Multiple R-squared: 0.04489, Adjusted R-squared: 0.04366 ## F-statistic: 36.42 on 1 and 775 DF, p-value: 2.46e-09 summary(lm(College$Personal~College$Room.Board)) ## ## Call: ## lm(formula = College$Personal ~ College$Room.Board) ## ## Residuals: ## Min 1Q Median 3Q Max ## -1153.1 -444.6 -92.3 316.0 5505.2 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 1877.14827 97.64374 19.224 < 2e-16 *** ## College$Room.Board -0.12312 0.02173 -5.666 2.06e-08 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 663.9 on 775 degrees of freedom ## Multiple R-squared: 0.03977, Adjusted R-squared: 0.03853 ## F-statistic: 32.1 on 1 and 775 DF, p-value: 2.065e-08 summary(lm(College$Personal~log(College$Room.Board))) ## ## Call: ## lm(formula = College$Personal ~ log(College$Room.Board)) ## ## Residuals: ## Min 1Q Median 3Q Max ## -1165.3 -442.5 -98.8 296.5 5520.4 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 5818.18 784.51 7.416 3.16e-13 *** ## log(College$Room.Board) -536.36 93.93 -5.710 1.61e-08 *** ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 663.7 on 775 degrees of freedom ## Multiple R-squared: 0.04037, Adjusted R-squ [Show More]

Last updated: 2 years ago

Preview 1 out of 15 pages

Buy Now

Instant download

We Accept:

We Accept
document-preview

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

We Accept

Reviews( 0 )

$9.00

Buy Now

We Accept:

We Accept

Instant download

Can't find what you want? Try our AI powered Search

178
0

Document information


Connected school, study & course


About the document


Uploaded On

Aug 03, 2021

Number of pages

15

Written in

Seller


seller-icon
Prof.Pierro

Member since 4 years

255 Documents Sold

Reviews Received
31
7
3
0
0
Additional information

This document has been written for:

Uploaded

Aug 03, 2021

Downloads

 0

Views

 178

Document Keyword Tags


$9.00
What is Scholarfriends

In Scholarfriends, a student can earn by offering help to other student. Students can help other students with materials by upploading their notes and earn money.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·