International GCSE in Further Pure Mathematics Formulae sheet
Mensuration
Surface area of sphere = 4πr2
Curved surface area of cone = πr × slant height
Volume of sphere = 4
3
πr3
Series
Arithmetic series
Sum to
...
International GCSE in Further Pure Mathematics Formulae sheet
Mensuration
Surface area of sphere = 4πr2
Curved surface area of cone = πr × slant height
Volume of sphere = 4
3
πr3
Series
Arithmetic series
Sum to n terms, Sn = + n[ ] a n − d
2
2 1 ( )
Geometric series
Sum to n terms, S a r
r
n
n
=
−−
( )
( )
1 1
Sum to infinity, S a
r
r
∞ =
1 −
< 1
Binomial series
( ) ( )
!
( ) ( )
!
1 1 1 ,
2
1 1
+ = x n + + x n n − x2 + + n n − − n r + + ∈ 1
r
x x n
n r
for <
Calculus
Quotient rule (differentiation)
d d
f g
f g g
x [g
xx
x x x x
x
( )
( )
( ) ( ) f( ) ( )
( )]
=
−' ' 2
Trigonometry
Cosine rule
In triangle ABC: a2 = b2 + c2 – 2bccos A
sin
tan
cos
θ
θ
θ
=
sin(A + B) = sin A cos B + cos A sin B sin(A – B) = sin A cos B – cos A sin B
cos(A + B) = cos A cos B – sin A sin B cos(A – B) = cos A cos B + sin A sin B
tan( ) tan tan
tan tan
A B A B
A B
+ =
+
1 −
tan( ) tan tan
tan tan
A B A B
A B
− =
−
1 +
Logarithms
log log
a log
b b
x
xa
=
http://britishstudentroom.wordpress.com/*P66024A0336* Turn over 3
Answer all ELEVEN questions.
Write your answers in the spaces provided.
You must write down all the stages in your working.
1 The quadratic equation
3(k + 2)x2 + (k +5)x + k = 0
has real roots.
Find the set of possible values of k.
(6)
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
...................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
(Total for Question 1 is 6 marks)
http://britishstudentroom.wordpress.com/4 *P66024A0436*
2 Angle α is acute such that cos α =
3 5
Angle β is obtuse such that sinβ =
1 2
(a) Find the exact value of
(i) tanα
(ii) tanβ
(3)
(b) Hence show that
tan(α + β) = m n
n m
3 3
− +
where m and n are positive integers whose values are to be found.
[Show More]