Mathematics > QUESTION PAPER (QP) > Further Pure Mathematics PAPER 1 (All)

Further Pure Mathematics PAPER 1

Document Content and Description Below

International GCSE in Further Pure Mathematics Formulae sheet Mensuration Surface area of sphere = 4πr2 Curved surface area of cone = πr × slant height Volume of sphere = 4 3 πr3 Series Ar... ithmetic series Sum to n terms, Sn = + n[ ] a n − d 2 2 1 ( ) Geometric series Sum to n terms, S a r r n n = −− ( ) ( ) 1 1 Sum to infinity, S a r r ∞ = 1 − < 1 Binomial series ( ) ( ) ! ( ) ( ) ! 1 1 1 , 2 1 1 + = x n + + x n n − x2 + + n n − − n r + + ∈ 1 r x x n n r    for <  Calculus Quotient rule (differentiation) d d f g f g g x [g xx x x x x x ( ) ( ) ( ) ( ) f( ) ( ) ( )]   = −' ' 2 Trigonometry Cosine rule In triangle ABC: a2 = b2 + c2 – 2bccos A sin tan cos θ θ θ = sin(A + B) = sin A cos B + cos A sin B sin(A – B) = sin A cos B – cos A sin B cos(A + B) = cos A cos B – sin A sin B cos(A – B) = cos A cos B + sin A sin B tan( ) tan tan tan tan A B A B A B + = + 1 − tan( ) tan tan tan tan A B A B A B − = − 1 + Logarithms log log a log b b x xa = http://britishstudentroom.wordpress.com/*P66024A0336* Turn over 3 Answer all ELEVEN questions. Write your answers in the spaces provided. You must write down all the stages in your working. 1 The quadratic equation 3(k + 2)x2 + (k +5)x + k = 0 has real roots. Find the set of possible values of k. (6) .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. ................................................................................................................................................................................................................................................... .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. (Total for Question 1 is 6 marks) http://britishstudentroom.wordpress.com/4 *P66024A0436* 2 Angle α is acute such that cos α = 3 5 Angle β is obtuse such that sinβ = 1 2 (a) Find the exact value of (i) tanα (ii) tanβ (3) (b) Hence show that tan(α + β) = m n n m 3 3 − + where m and n are positive integers whose values are to be found. [Show More]

Last updated: 2 years ago

Preview 1 out of 36 pages

Buy Now

Instant download

We Accept:

We Accept
document-preview

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

We Accept

Reviews( 0 )

$7.00

Buy Now

We Accept:

We Accept

Instant download

Can't find what you want? Try our AI powered Search

181
0

Document information


Connected school, study & course


About the document


Uploaded On

Aug 04, 2022

Number of pages

36

Written in

Seller


seller-icon
CourseWorks,Inc

Member since 3 years

9 Documents Sold

Reviews Received
2
0
0
0
0
Additional information

This document has been written for:

Uploaded

Aug 04, 2022

Downloads

 0

Views

 181

Document Keyword Tags

More From CourseWorks,Inc

View all CourseWorks,Inc's documents »

$7.00
What is Scholarfriends

In Scholarfriends, a student can earn by offering help to other student. Students can help other students with materials by upploading their notes and earn money.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·