The quadratic equation
3(k + 2)x2 + (k +5)x + k = 0
has real roots.
Find the set of possible values of k.
(6)
.........................................................................................................
...
The quadratic equation
3(k + 2)x2 + (k +5)x + k = 0
has real roots.
Find the set of possible values of k.
(6)
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
...................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
(Total for Question 1 is 6 marks)
http://britishstudentroom.wordpress.com/4 *P66024A0436*
2 Angle α is acute such that cos α =
3 5
Angle β is obtuse such that sinβ =
1 2
(a) Find the exact value of
(i) tanα
(ii) tanβ
(3)
(b) Hence show that
tan(α + β) = m n
n m
3 3
− +
where m and n are positive integers whose values are to be found.
(3)
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
...................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
http://britishstudentroom.wordpress.com/*P66024A0536* Turn over 5
Question 2 continued
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
..................................................................................................................................................................................................................................................
(Total for Question 2 is 6 marks)
http://britishstudentroom.wordpress.com/6 *P66024A0636*
3 A curve C has equation y =
ax
x
−+
3 5
where a is a constant and x ≠ –5
The gradient of C at the point on the curve where x = 2 is 18
49
(a) Show that a = 3
(3)
Hence
(b) write down an equation of the asymptote to C that is
(i) parallel to the x‑axis,
(ii) parallel to the y‑axis,
(2)
(c) find the coordinates of the point where C crosses
(i) the x‑axis,
(ii) the y‑axis.
(2)
(d) Sketch the curve C, showing clearly its asymptotes and the coordinates of the points
where C crosses the coordinate axes
[Show More]