Mathematics > QUESTION PAPER (QP) > Pure Mathematics (All)
The quadratic equation 3(k + 2)x2 + (k +5)x + k = 0 has real roots. Find the set of possible values of k. (6) ........................................................................................ ............................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. ................................................................................................................................................................................................................................................... .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. (Total for Question 1 is 6 marks) http://britishstudentroom.wordpress.com/4 *P66024A0436* 2 Angle α is acute such that cos α = 3 5 Angle β is obtuse such that sinβ = 1 2 (a) Find the exact value of (i) tanα (ii) tanβ (3) (b) Hence show that tan(α + β) = m n n m 3 3 − + where m and n are positive integers whose values are to be found. (3) .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. ................................................................................................................................................................................................................................................... .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. http://britishstudentroom.wordpress.com/*P66024A0536* Turn over 5 Question 2 continued .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. (Total for Question 2 is 6 marks) http://britishstudentroom.wordpress.com/6 *P66024A0636* 3 A curve C has equation y = ax x −+ 3 5 where a is a constant and x ≠ –5 The gradient of C at the point on the curve where x = 2 is 18 49 (a) Show that a = 3 (3) Hence (b) write down an equation of the asymptote to C that is (i) parallel to the x‑axis, (ii) parallel to the y‑axis, (2) (c) find the coordinates of the point where C crosses (i) the x‑axis, (ii) the y‑axis. (2) (d) Sketch the curve C, showing clearly its asymptotes and the coordinates of the points where C crosses the coordinate axes [Show More]
Last updated: 2 years ago
Preview 1 out of 36 pages
Buy this document to get the full access instantly
Instant Download Access after purchase
Buy NowInstant download
We Accept:
Can't find what you want? Try our AI powered Search
Connected school, study & course
About the document
Uploaded On
Sep 09, 2022
Number of pages
36
Written in
This document has been written for:
Uploaded
Sep 09, 2022
Downloads
0
Views
91
In Scholarfriends, a student can earn by offering help to other student. Students can help other students with materials by upploading their notes and earn money.
We're available through e-mail, Twitter, Facebook, and live chat.
FAQ
Questions? Leave a message!
Copyright © Scholarfriends · High quality services·