Mathematics  >  QUESTION PAPER (QP)  >  Pure Mathematics (All)

Pure Mathematics

Document Content and Description Below

The quadratic equation 3(k + 2)x2 + (k +5)x + k = 0 has real roots. Find the set of possible values of k. (6) ..................................................................................... ... ............................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. ................................................................................................................................................................................................................................................... .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. (Total for Question 1 is 6 marks) http://britishstudentroom.wordpress.com/4 *P66024A0436* 2 Angle α is acute such that cos α = 3 5 Angle β is obtuse such that sinβ = 1 2 (a) Find the exact value of (i) tanα (ii) tanβ (3) (b) Hence show that tan(α + β) = m n n m 3 3 − + where m and n are positive integers whose values are to be found. (3) .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. ................................................................................................................................................................................................................................................... .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. http://britishstudentroom.wordpress.com/*P66024A0536* Turn over 5 Question 2 continued .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. .................................................................................................................................................................................................................................................. (Total for Question 2 is 6 marks) http://britishstudentroom.wordpress.com/6 *P66024A0636* 3 A curve C has equation y = ax x −+ 3 5 where a is a constant and x ≠ –5 The gradient of C at the point on the curve where x = 2 is 18 49 (a) Show that a = 3 (3) Hence (b) write down an equation of the asymptote to C that is (i) parallel to the x‑axis, (ii) parallel to the y‑axis, (2) (c) find the coordinates of the point where C crosses (i) the x‑axis, (ii) the y‑axis. (2) (d) Sketch the curve C, showing clearly its asymptotes and the coordinates of the points where C crosses the coordinate axes [Show More]

Last updated: 3 years ago

Preview 1 out of 36 pages

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)
Preview image of Pure Mathematics document

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Reviews( 0 )

$7.00

Buy Now

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Instant download

Can't find what you want? Try our AI powered Search

123
0

Document information


Connected school, study & course


About the document


Uploaded On

Sep 09, 2022

Number of pages

36

Written in

All

Seller


Profile illustration for CourseWorks,Inc
CourseWorks,Inc

Member since 3 years

9 Documents Sold

Reviews Received
2
0
0
0
0
Additional information

This document has been written for:

Uploaded

Sep 09, 2022

Downloads

 0

Views

 123

Document Keyword Tags

More From CourseWorks,Inc

View all CourseWorks,Inc's documents »

$7.00
What is Scholarfriends

Scholarfriends.com Online Platform by Browsegrades Inc. 651N South Broad St, Middletown DE. United States.

We are here to help

We're available through e-mail, Twitter, and live chat.
 FAQ
 Questions? Leave a message!


Copyright © Scholarfriends · High quality services·