Mathematics > As Level Question Papers > AQA A-level MATHEMATICS Paper 3 JUNE 2022 (All)

AQA A-level MATHEMATICS Paper 3 JUNE 2022

Document Content and Description Below

A-level MATHEMATICS Paper 3 Time allowed: 2 hours Materials l You must have the AQA Formulae for A‑level Mathematics booklet. l You should have a graphical or scientific calculator that meets ... the requirements of the specification. Instructions l Use black ink or black ball-point pen. Pencil should only be used for drawing. l Fill in the boxes at the top of this page. l Answer all questions. l You must answer each question in the space provided for that question. If you need extra space for your answer(s), use the lined pages at the end of this book. Write the question number against your answer(s). l Do not write outside the box around each page or on blank pages. l Show all necessary working; otherwise marks for method may be lost. l Do all rough work in this book. Cross through any work that you do not want to be marked. Information l The marks for questions are shown in brackets. l The maximum mark for this paper is 100. Advice l Unless stated otherwise, you may quote formulae, without proof, from the booklet. l You do not necessarily need to use all the space provided. Please write clearly in block capitals. Centre number Candidate number Surname ________________________________________________________________________ Forename(s) ________________________________________________________________________ Candidate signature ________________________________________________________________________ For Examiner’s Use Question Mark 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 TOTAL I declare this is my own work. 2 Section A Answer all questions in the spaces provided. 1 State the range of values of x for which the binomial expansion of ffiffiffiffiffiffiffiffiffiffiffi 1  x 4 r is valid. Circle your answer. [1 mark] jxj < 1 4 jxj < 1 jxj < 2 jxj < 4 Jun22/7357/3 Do not write outside the box (02) 3 2 The shaded region, shown in the diagram below, is defined by x2  7x þ 7  y  7  2x O 5 x y Identify which of the following gives the area of the shaded region. Tick (3) one box. [1 mark] ð (7  2x) dx  ð (x2  7x þ 7) dx ð5 0 (x2  5x) dx ð5 0 (5x  x2) dx ð5 0 (x2  9x þ 14) dx Turn over for the next question Do not write outside the box Jun22/7357/3 Turn over s (03) 4 3 The function f is defined by f (x) ¼ 2x þ 1 Solve the equation f (x) ¼ f 1ðx) Circle your answer. [1 mark] x ¼ 1 x ¼ 0 x ¼ 1 x ¼ 2 4 Find ð x2 þ x 1 2   dx [2 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Do not write outside the box Jun22/7357/3 (04) 5 5 (a) Sketch the graph of y ¼ sin 2x for 0  x 360 O x y 90° 180° 270° 360° [2 marks] 5 (b) The equation sin 2x ¼ A has exactly two solutions for 0  x 360 State the possible values of A. [1 mark] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Do not write outside the box Jun22/7357/3 Turn over s (05) 6 6 A design for a surfboard is shown in Figure 1. Figure 1 length width The curve of the top half of the surfboard can be modelled by the parametric equations x ¼ 2t 2 y ¼ 9t  0:7t2 for 0  t  9:5 as shown in Figure 2, where x and y are measured in centimetres. Figure 2 O y x 6 (a) Find the length of the surfboard. [2 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Do not write outside the box Jun22/7357/3 (06) 7 6 (b) (i) Find an expression for dy dx in terms of t. [3 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 6 (b) (ii) Hence, show that the width of the surfboard is approximately one third of its length. [4 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Do not write outside the box Jun22/7357/3 Turn over s (07) 8 7 A planet takes T days to complete one orbit of the Sun. T is known to be related to the planet’s average distance d, in millions of kilometres, from the Sun. A graph of log10 T against log10 d is shown with data for Mercury and Uranus labelled. log10 T log10 d Uranus (3.46, 4.49) Mercury (1.76, 1.94) 7 (a) (i) Find the equation of the straight line in the form log10 T ¼ a þ b log10 d where a and b are constants to be found. [3 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Do not write outside the box Jun22/7357/3 (08) 9 7 (a) (ii) Show that T ¼ K d n where K and n are constants to be found. [2 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 7 (b) Neptune takes approximately 60 000 days to complete one orbit of the Sun. Use your answer to 7(a)(ii) to find an estimate for the average distance of Neptune from the Sun. [2 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Turn over for the next question Do not write outside the box Jun22/7357/3 Turn over s (09) 10 8 Water is poured into an empty cone at a constant rate of 8 cm3/s After t seconds the depth of the water in the inverted cone is h cm, as shown in the diagram below. h When the depth of the water in the inverted cone is h cm, the volume, Vcm3, is given by V ¼ ph3 12 8 (a) Show that when t ¼ 3 dV dh ¼ 6 ffiffiffiffiffiffi 6p p3 [4 marks] _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ Do not write outside the box [Show More]

Last updated: 1 year ago

Preview 1 out of 36 pages

Buy Now

Instant download

We Accept:

We Accept
document-preview

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

We Accept

Reviews( 0 )

$13.50

Buy Now

We Accept:

We Accept

Instant download

Can't find what you want? Try our AI powered Search

70
0

Document information


Connected school, study & course


About the document


Uploaded On

Jun 14, 2023

Number of pages

36

Written in

Seller


seller-icon
stevenking

Member since 3 years

0 Documents Sold

Additional information

This document has been written for:

Uploaded

Jun 14, 2023

Downloads

 0

Views

 70

Document Keyword Tags


$13.50
What is Scholarfriends

In Scholarfriends, a student can earn by offering help to other student. Students can help other students with materials by upploading their notes and earn money.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·