Biology > Study Notes > Urinalysis and Body Fluids_6th_LATEST | Urinalysis and Body Fluids_6th_Edition_2020 | Urinalysis and (All)
Safety and Quality Assessment 1-1 List the six components of the chain of infection and the laboratory safety precautions that break the chain. 1-2 State the purpose of the Standard Precautions po... licy and describe its guidelines. 1-3 State the requirements mandated by the Occupational Exposure to Blood-Borne Pathogens Compliance Directive. 1-4 Describe the types of personal protective equipment that laboratory personnel wear, including when, how, and why each article is used. 1-5 Correctly perform hand hygiene procedures following Centers for Disease Control and Prevention (CDC) guidelines. 1-6 Describe the acceptable methods for handling and disposing of biologic waste and sharp objects in the urinalysis laboratory. 1-7 Discuss the components and purpose of chemical hygiene plans and Material Safety Data Sheets. 1-8 State and interpret the components of the National Fire Protection Association hazardous material labeling system. 1-9 Describe precautions that laboratory personnel should take with regard to radioactive, electrical, and fire hazards. 1-10 Explain the RACE and PASS actions to be taken when a fire is discovered. 1-11 Recognize standard hazard warning symbols. 1-12 Define the preexamination, examination, and postexamination components of quality assessment. 1-13 Distinguish between the components of internal quality control, external quality control, electronic quality control, and proficiency testing. L E A R N I N G O B J E C T I V E S Upon completing this chapter, the reader will be able to: Accreditation Accuracy Biohazardous Chain of infection Chemical hygiene plan Clinical Laboratory Improvement Amendments (CLIA) Clinical and Laboratory Standards Institute (CLSI) Electronic quality control Examination variable External quality assessment (EQA) External quality control Fomite Infection control Internal quality control Material Safety Data Sheet (MSDS) Occupational Safety and Health Administration (OSHA) Personal protective equipment (PPE) Postexamination variable Postexposure prophylaxis (PEP) Precision Preexamination variable Preventive maintenance (PM) Proficiency testing Quality assessment (QA) Quality control (QC) Radioisotope Reliability Standard Precautions Turnaround time (TAT) K E Y T E R M S4 Part One | Background S A F E T Y The clinical laboratory contains a variety of safety hazards, many of which are capable of producing serious injury or lifethreatening disease. To work safely in this environment, laboratory personnel must learn what hazards exist, the basic safety precautions associated with them, and how to apply the basic rules of common sense required for everyday safety for patients, co-workers, and themselves. As can be seen in Table 1–1, some hazards are unique to the health-care environment, and others are encountered routinely throughout life. Safety procedure manuals must be readily available in the laboratory that describe the safety policies mandated by the Centers for Disease Control and Prevention (CDC) and the Occupational Safety and Health Administration (OSHA), and strict adherence to these guidelines by laboratory personnel is essential. The manual must be updated and reviewed annually by the laboratory director. The Clinical and Laboratory Standards Institute (CLSI) provides the guidelines for writing these procedures and policies.1-3 Biologic Hazards The health-care setting provides abundant sources of potentially harmful microorganisms. These microorganisms are frequently present in the specimens received in the clinical laboratory. Understanding how microorganisms are transmitted (chain of infection) is essential to preventing infection. All health-care facilities have developed procedures to control and monitor infections occurring within their facilities. This is referred to as infection control. The chain of infection requires a continuous link between an infectious agent, a reservoir, a portal of exit, a means of transmission, a portal of entry, and a susceptible host.4 Infectious agents consist of bacteria, fungi, parasites, and viruses. The reservoir is the location of potentially harmful microorganisms, such as a contaminated clinical specimen or an infected patient. It is the place where the infectious agent can live and possible multiply. Humans and animals make excellent reservoirs. Equipment and other soiled inanimate objects, called fomites, will serve as reservoirs, particularly if they contain blood, urine, or other body fluids. Some microorganisms form spores or become inactive when conditions are not ideal and wait until a suitable reservoir is available. The infectious agent must have a way to exit the reservoir to continue the chain of infection. This can be through the mucous membranes of the nose, mouth, and eyes, and in blood or other body fluids. Once the infectious agent has left the reservoir, it must have a way to reach a susceptible host. Means of transmission include: 1. Direct contact: the unprotected host touches the patient, specimen, or a contaminated object (reservoir) 2. Airborne: inhalation of dried aerosol particles circulating on air currents or attached to dust particles 3. Droplet: the host inhales material from the reservoir (e.g., aerosol droplets from a patient or an uncapped centrifuge tube, or when specimens are aliquoted or spilled) 4. Vehicle: ingestion of a contaminated substance (e.g., food, water, specimen) 5. Vector: from an animal or insect bite After the infectious agent has been transmitted to a new reservoir, it must have a means to enter the reservoir. The portal of entry can be the same as the portal of exit, which includes the mucous membranes of the nose, mouth, and eyes, breaks in the skin, and open wounds. The susceptible host can be another patient during invasive procedures, visitors, and healthcare personnel when exposed to infectious specimens or needlestick injuries. Immunocompromised patients, newborns and infants, and the elderly are often more susceptible hosts. Stress, fatigue, and lack of proper nutrition depress the immune system and contribute to the susceptibility of patients and health-care providers. Once the chain of infection is complete, the infected host then becomes another source able to transmit the microorganisms to others.1 In the clinical laboratory, the most direct contact with a source of infection is through contact with patient specimens, although contact with patients and infected objects also occurs. Preventing completion of the chain of infection is a primary objective of biologic safety. Figure 1–1 illustrates the universal symbol for biohazardous material and demonstrates how following prescribed safety practices can break the chain of infection. Figure 1–1 places particular emphasis on laboratory practices. Type Source Possible Injury Biologic Sharps Chemical Radioactive Electrical Fire/ explosive Physical Table 1–1 Types of Safety Hazards Infectious agents Needles, lancets, broken glass Preservatives and reagents Equipment and radioisotopes Ungrounded or wet equipment; frayed cords Open flames, organic chemicals Wet floors, heavy boxes, patients Bacterial, fungal, viral, or parasitic infections Cuts, punctures, or blood-borne pathogen exposure Exposure to toxic, carcinogenic, or caustic agents Radiation exposure Burns or shock Burns or dismemberment Falls, sprains, or strains From Strasinger, SK, and DiLorenzo, MA: The Phlebotomy Textbook, third edition, FA Davis, Philadelphia, 2011, p 52, with permission.Chapter 1 | Safety and Quality Assessment 5 Proper hand hygiene, correct disposal of contaminated materials, and wearing personal protective equipment (PPE) are of major importance in the laboratory. Concern over exposure to blood-borne pathogens, such as hepatitis B virus (HBV), hepatitis C virus (HCV), and human immunodeficiency virus (HIV), resulted in the drafting of guidelines and regulations by the CDC and OSHA to prevent exposure. In 1987 the CDC instituted Universal Precautions (UP). Under UP all patients are considered to be possible carriers of bloodborne pathogens. The guideline recommends wearing gloves when collecting or handling blood and body fluids contaminated with blood and wearing face shields when there is danger of blood splashing on mucous membranes and when disposing of all needles and sharp objects in puncture-resistant containers. The CDC excluded urine and body fluids not visibly contaminated by blood from UP, although many specimens can contain a considerable amount of blood before it becomes visible. The modification of UP for body substance isolation (BSI) helped to alleviate this concern. BSI guidelines are not limited to blood-borne pathogens; they consider all body fluids and moist body substances to be potentially infectious. According to BSI guidelines, personnel should wear gloves at all times when encountering moist body substances. A major disadvantage of BSI guidelines is that they do not recommend handwashing after removing gloves unless visual contamination is present. • Immunizations • Patient isolation • Nursery precautions • Healthy lifestyle • Hand hygiene • Standard precautions • PPE • Sterile equipment • Sealed biohazardous waste containers • Sealed specimen containers • Hand hygiene • Standard precautions Break the link • Disinfection Infectious agent • Hand hygiene • Bacteria • Fungi • Parasites Susceptible • Viruses host • Patients • Elderly • Newborns • Immunocompromised • Health-care workers Portal of entry • Nose • Mouth • Mucous membranes • Skin • Unsterile equipment Means of transmission • Droplet • Airborne • Contact • Vector • Vehicle Portal of exit • Nose • Mouth • Mucous membranes • Specimen collection Reservoir • Humans • Animals • Insects • Fomites • Blood/body fluids • Hand hygiene • Standard precautions • PPE • Patient isolation Break the link Break the link Break the link Break the link Figure 1–1 Chain of infection and safety practices related to the biohazard symbol. (From Strasinger, SK, and DiLorenzo, MA: The Phlebotomy Textbook, FA Davis, Philadelphia, 2011, with permission.)6 Part One | Background In 1996 the CDC and the Healthcare Infection Control Practices Advisory Committee (HICPAC) combined the major features of UP and BSI guidelines and called the new guidelines Standard Precautions. Although Standard Precautions, as described below, stress patient contact, the principles can also be applied to handling patient specimens in the laboratory.5 Standard Precautions are as follows: 1. Hand hygiene: Hand hygiene includes both hand washing and the use of alcohol-based antiseptic cleansers. Sanitize hands after touching blood, body fluids, secretions, excretions, and contaminated items, whether or not gloves are worn. Sanitize hands immediately after gloves are removed, between patient contacts, and when otherwise indicated to avoid transferring microorganisms to other patients or environments. Sanitizing hands may be necessary between tasks and procedures on the same patient to prevent crosscontamination of different body sites. 2. Gloves: Wear gloves (clean, nonsterile gloves are adequate) when touching blood, body fluids, secretions, excretions, and contaminated items. Put on gloves just before touching mucous membranes and nonintact skin. Change gloves between tasks and procedures on the same patient after contact with material that may contain a high concentration of microorganisms. Remove gloves promptly after use, before touching noncontaminated items and environmental surfaces, and between patients. Always sanitize your hands immediately after glove removal to avoid transferring microorganisms to other patients or environments. 3. Mouth, nose, and eye protection: Wear a mask and eye protection or a face shield to protect mucous membranes of the eyes, nose, and mouth during procedures and patient care activities that are likely to generate splashes or sprays of blood, body fluids, secretions, or excretions. A specially fitted respirator (N95) must be used during patient care activities related to suspected mycobacterium exposure. 4. Gown: Wear a gown (a clean, nonsterile gown is adequate) to protect skin and to prevent soiling of clothing during procedures and patient care activities that are likely to generate splashes or sprays of blood, body fluids, secretions, or excretions. Select a gown that is appropriate for the activity and the amount of fluid likely to be encountered (e.g., fluid-resistant in the laboratory). Remove a soiled gown as promptly as possible, and sanitize hands to avoid transferring microorganisms to other patients or environments. 5. Patient care equipment: Handle used patient care equipment soiled with blood, body fluids, secretions, and excretions in a manner that prevents skin and mucous membrane exposure, clothing contamination, and transfer of microorganisms to other patients or environments. Ensure that reusable equipment is not used for the care of another patient until it has been cleaned and reprocessed appropriately. Ensure that single-use items are discarded properly. 6. Environmental control: Ensure that the hospital has adequate procedures for the routine care, cleaning, and disinfection of environmental surfaces, beds, bedrails, bedside equipment, and other frequently touched surfaces. Ensure that these procedures are being followed. 7. Linen: Handle, transport, and process linen soiled with blood, body fluids, secretions, and excretions in a manner that prevents skin and mucous membrane exposures and clothing contamination and that avoids the transfer of microorganisms to other patients and environments. 8. Occupational health and blood-borne pathogens: Take care to prevent injuries when using needles, scalpels, and other sharp instruments or devices; when handling sharp instruments after procedures; when cleaning used instruments; and when disposing of used needles. Never recap used needles or otherwise manipulate them using both hands or use any other technique that involves directing the point of a needle toward any part of the body; rather, use self-sheathing needles or a mechanical device to conceal the needle. Do not remove used unsheathed needles from disposable syringes by hand, and do not bend, break, or otherwise manipulate used needles by hand. Place used disposable syringes and needles, scalpel blades, and other sharp items in appropriate puncture-resistant containers, which are located as close as practical to the area in which the items were used, and place reusable syringes and needles in a puncture-resistant container for transport to the reprocessing area. Use mouthpieces, resuscitation bags, or other ventilation devices as an alternative to mouthto-mouth resuscitation methods in areas where the need for resuscitation is predictable. 9. Patient placement: Place a patient in a private room who contaminates the environment or who does not (or cannot be expected to) assist in maintaining appropriate hygiene or environment control. If a private room is not available, consult with infection control professionals regarding patient placement or other alternatives. 10. Respiratory hygiene/cough etiquette: Educate health-care personnel, patients, and visitors to contain respiratory secretions to prevent droplet and fomite transmission of respiratory pathogens. Offer masks to coughing patients, distance symptomatic patients from others, and practice good hand hygiene to prevent the transmission of respiratory pathogens. The Occupational Exposure to Blood-Borne Pathogens Standard is a law monitored and enforced by OSHA.6,7 These controls are required by OSHA to be provided by or mandated by the employer for all employees. Specific requirements of this OSHA standard include the following: Engineering Controls 1. Providing sharps disposal containers and needles with safety devices.Chapter 1 | Safety and Quality Assessment 7 2. Requiring discarding of needles with the safety device activated and the holder attached. 3. Labeling all biohazardous materials and containers. Work Practice Controls 4. Requiring all employees to practice Standard Precautions and documenting training on an annual basis. 5. Prohibiting eating, drinking, smoking, and applying cosmetics in the work area. 6. Establishing a daily work surface disinfection protocol. Personal Protective Equipment 7. Providing laboratory coats, gowns, face shields, and gloves to employees and laundry facilities for nondisposable protective clothing. Medical 8. Providing immunization for the hepatitis B virus free of charge. 9. Providing medical follow-up to employees who have been accidentally exposed to blood-borne pathogens. Documentation 10. Documenting annual training of employees in safety standards. 11. Documenting evaluations and implementation of safer needle devices. 12. Involving employees in the selection and evaluation of new devices and maintaining a list of those employees and the evaluations. 13. Maintaining a sharps injury log including the type and brand of safety device, location and description of the incident, and confidential employee follow-up. Any accidental exposure to a possible blood-borne pathogen must be immediately reported to a supervisor. Evaluation of the incident must begin right away to ensure appropriate postexposure prophylaxis (PEP). The CDC provides periodically updated guidelines for the management of exposures and recommended PEP.8,9 Personal Protective Equipment PPE used in the laboratory includes gloves, fluid-resistant gowns, eye and face shields, and Plexiglas countertop shields. Gloves should be worn when in contact with patients, specimens, and laboratory equipment or fixtures. When specimens are collected, gloves must be changed between every patient. In the laboratory, they are changed whenever they become noticeably contaminated or damaged and are always removed when leaving the work area. Wearing gloves is not a substitute for hand hygiene, and hands must be sanitized after gloves are removed. A variety of gloves types are available, including sterile and nonsterile, powdered and unpowdered, and latex and nonlatex. Allergy to latex is increasing among health-care workers, and laboratory personnel should be alert for symptoms of reactions associated with latex. Reactions to latex include irritant contact dermatitis, which produces patches of dry, itchy irritation on the hands; delayed hypersensitivity reactions resembling poison ivy that appear 24 to 48 hours after exposure; and true, immediate hypersensitivity reactions often characterized by facial flushing and breathing difficulties. Hand sanitizing immediately after removing gloves and avoiding powdered gloves may aid in preventing the development of latex allergies. Replacing latex gloves with nitrile or vinyl gloves provides an alternative. Any symptoms of latex allergy should be reported to a supervisor because true latex allergy can be life-threatening.10 Fluid-resistant laboratory coats with wrist cuffs are worn to protect clothing and skin from exposure to patients’ body substances. These coats should always be completely buttoned, and gloves should be pulled over the cuffs. They are worn at all times when working with patient specimens and are removed prior to leaving the work area. They are changed when they become visibly soiled. Disposable coats are placed in containers for biohazardous waste, and nondisposable coats are placed in designated laundry receptacles. Shoes must be closed-toed and cover the entire foot. The mucous membranes of the eyes, nose, and mouth must be protected from specimen splashes and aerosols. A variety of protective equipment is available, including masks and goggles, full-face plastic shields that cover the front and sides of the face, mask with attached shield, and Plexiglas countertop shields. Particular care should be taken to avoid splashes and aerosols when removing container tops, pouring specimens, and centrifuging specimens. Specimens must never be centrifuged in uncapped tubes or in uncovered centrifuges. When specimens are received in containers with contaminated exteriors, the exterior of the container must be disinfected or, if necessary, a new specimen may be requested. Hand Hygiene Hand hygiene is emphasized in Figure 1–1 and in the Standard Precautions guidelines. Hand contact is the primary method of infection transmission. Laboratory personnel must always sanitize hands before patient contact, after gloves are removed, before leaving the work area, at any time when hands have been knowingly contaminated, before going to designated break areas, and before and after using bathroom facilities. Hand hygiene includes both hand washing and using alcoholbased antiseptic cleansers. Alcohol-based cleansers can be used when hands are not visibly contaminated. They are not recommended after contact with spore-forming bacteria, including Clostridium difficile and Bacillus sp. When using alcohol-based cleansers, apply the cleanser to the palm of one hand. Rub your hands together and over the entire cleansing area, including between the fingers and thumbs. Continue rubbing until the alcohol dries. The CDC has developed hand washing guidelines to be followed for correct hand washing.1,11 Procedure 1-1 demonstrates CDC routine hand washing guidelines.4 More stringent procedures are used in surgery and in areas with highly susceptible patients, such as immunocompromised and burn patients.8 Part One | Background Hand Washing Procedure Equipment Antimicrobial soap Paper towels Running water Waste container Procedure 1. Wet hands with warm water. Do not allow parts of body to touch the sink. 2. Apply soap, preferably antimicrobial. PROCEDURE 1-1 3. Rub to form a lather, create friction, and loosen debris. Thoroughly clean between the fingers and under the fingernails for at least 20 seconds; include thumbs and wrists in the cleaning. 4. Rinse hands in a downward position to prevent recontamination of hands and wrists. 5. Obtain paper towel from the dispenser.Chapter 1 | Safety and Quality Assessment 9 6. Dry hands with paper towel. PROCEDURE 1-1—cont’d 7. Turn off faucets with a clean paper towel to prevent contamination. Biologic Waste Disposal All biologic waste, except urine, must be placed in appropriate containers labeled with the biohazard symbol (Fig. 1–2). This includes both specimens and the materials with which the specimens come in contact. The waste is then decontaminated following institutional policy: incineration, autoclaving, or pickup by a certified hazardous waste company. Urine may be discarded by pouring it into a laboratory sink under a Plexiglas countertop shield. Care must be taken to avoid splashing, and the sink should be flushed with water after specimens are discarded. Disinfection of the sink using a 1:5 or 1:10 dilution of sodium hypochlorite should be performed daily. Sodium hypochlorite dilutions stored in plastic bottles are effective for 1 month if protected from light after preparation.12 The same solution also can be used for routinely disinfecting countertops and accidental spills. The solution should be allowed to air-dry on the contaminated area. Absorbent materials used for cleaning countertops and removing spills must be discarded in biohazard containers. Empty urine containers can be discarded as nonbiologically hazardous waste (Fig. 1–3). Sharp Hazards Sharp objects in the laboratory, including needles, lancets, and broken glassware, present a serious biologic hazard, particularly for the transmission of blood-borne pathogens. All sharp objects must be disposed in puncture-resistant, leak-proof container with the biohazard symbol. Puncture-resistant containers should be conveniently located within the work area. The biohazard sharp containers should not be overfilled and must always be replaced when the safe capacity mark is reached. Figure 1–2 Biohazard symbol. (From Strasinger, SK, and DiLorenzo, MA: The Phlebotomy Textbook, FA Davis, Philadelphia, 2011, with permission.)10 Part One | Background Chemical Hazards The same general rules for handling biohazardous materials apply to chemically hazardous materials; that is, to avoid getting these materials in or on bodies, clothes, or work area. Every chemical in the workplace should be presumed hazardous. Chemical Spills and Exposure When skin contact occurs, the best first aid is to flush the area with large amounts of water for at least 15 minutes, then seek medical attention. For this reason, all laboratory personnel should know the location and proper use of emergency showers and eye wash stations. Contaminated clothing should be removed as soon as possible. No attempt should be made to neutralize chemicals that come in contact with the skin. Chemical spill kits containing protective apparel, nonreactive absorbent material, and bags for disposing of contaminated materials should be available for cleaning up spills. Chemical Handling Chemicals should never be mixed together unless specific instructions are followed, and they must be added in the order specified. This is particularly important when combining acid and water. Acid should always be added to water to avoid the possibility of sudden splashing caused by the rapid generation of heat in some chemical reactions. Wearing goggles and preparing reagents under a fume hood are recommended safety precautions. Chemicals should be used from containers that are of an easily manageable size. Pipetting by mouth is unacceptable in the laboratory. State and federal regulations are in place for the disposal of chemicals and should be consulted. Chemical Hygiene Plan OSHA also requires all facilities that use hazardous chemicals to have a written chemical hygiene plan (CHP) available to employees.13 The purpose of the plan is to detail the following: 1. Appropriate work practices 2. Standard operating procedures 3. PPE 4. Engineering controls, such as fume hoods and flammables safety cabinets 5. Employee training requirements 6. Medical consultation guidelines Each facility must appoint a chemical hygiene officer, who is responsible for implementing and documenting compliance with the plan. Examples of required safety equipment and information are shown in Figure 1–4. Chemical Labeling Hazardous chemicals should be labeled with a description of their particular hazard, such as poisonous, corrosive, flammable, explosive, teratogenic, or carcinogenic (Fig. 1–5). The National Fire Protection Association (NFPA) has developed the Standard System for the Identification of the Fire Hazards of Materials, NFPA 704.14 This symbol system is used to inform firefighters of the hazards they may encounter with fires in a particular area. The diamond-shaped, color-coded symbol contains information relating to health, flammability, reactivity, and personal protection/special precautions. Each category is graded on a scale of 0 to 4, based on the extent of concern. These symbols are placed on doors, cabinets, and containers. An example of this system is shown in Figure 1–6. Material Safety Data Sheets The OSHA Federal Hazard Communication Standard requires that all employees have a right to know about all chemical hazards present in their workplace. The information is provided Figure 1–3 Technologist disposing of urine (A) sample and (B) container. A BChapter 1 | Safety and Quality Assessment 11 Figure 1–4 Chemical safety aids. A, emergency shower; B, eye wash station. (From Strasinger, SK, and DiLorenzo, MA: The Phlebotomy Textbook, FA Davis, Philadelphia, 2011, with permission.) in the form of Material Safety Data Sheets (MSDSs) on file in the workplace. By law, vendors are required to provide these sheets to purchasers; however, the facility itself is responsible for obtaining and making MSDSs available to employees. Information contained in an MSDS includes the following: 1. Physical and chemical characteristics 2. Fire and explosion potential 3. Reactivity potential 4. Health hazards and emergency first aid procedures 5. Methods for safe handling and disposal 6. Primary routes of entry 7. Exposure limits and carcinogenic potential Radioactive Hazards Radioactivity may be encountered in the clinical laboratory when procedures using radioisotopes are performed. The amount of radioactivity present in the clinical laboratory is very small and represents little danger; however, the effects of radiation are cumulative related to the amount of exposure. The amount of radiation exposure is related to a combination of time, distance, and shielding. Persons working in a radioactive environment are required to wear measuring devices to determine the amount of radiation they are accumulating. Laboratory personnel should be familiar with the radioactive hazard symbol shown here. This symbol must be displayed on the doors of all areas where radioactive material is present. Exposure to radiation during pregnancy presents a danger to the fetus; personnel who are pregnant or think they may be should avoid areas with this symbol. Electrical Hazards The laboratory setting contains a large amount of electrical equipment with which workers have frequent contact. The same general rules of electrical safety observed outside the workplace apply. The danger of water or fluid coming in contact with equipment is greater in the laboratory setting. Equipment should not be operated with wet hands. Designated hospital personnel monitor electrical equipment closely; however, laboratory personnel should continually observe for any dangerous conditions, such as frayed cords and overloaded circuits, and report them to the supervisor. Equipment that has become wet should be unplugged and allowed to dry completely before reusing. Equipment also should be unplugged before cleaning. All electrical equipment must be grounded with three-pronged plugs. When an accident involving electrical shock occurs, the electrical source must be removed immediately. This must be done without touching the person or the equipment involved to avoid transferring the current. Turning off the circuit breaker, unplugging the equipment, or moving the equipment using a nonconductive glass or wood object are safe procedures to follow. The victim should receive immediate medical assistance following A Bdiscontinuation of the electricity. Cardiopulmonary resuscitation (CPR) may be necessary. Fire/Explosive Hazards The Joint Commission (JC) requires that all health-care institutions post evacuation routes and detailed plans to follow in the event of a fire. Laboratory personnel should be familiar with these procedures. When a fire is discovered, all employees are expected to take the actions in the acronym RACE: Rescue—rescue anyone in immediate danger Alarm—activate the institutional fire alarm system Contain—close all doors to potentially affected areas 12 Part One | Background Figure 1–5 Chemical hazard symbols. (From Strasinger, SK, and DiLorenzo, MA: The Phlebotomy Textbook, FA Davis, Philadelphia, 2011, with permission.) Extinguish/Evacuate—attempt to extinguish the fire, if possible or evacuate, closing the door As discussed previously, laboratory workers often use potentially volatile or explosive chemicals that require special procedures for handling and storage. Flammable chemicals should be stored in safety cabinets and explosion-proof refrigerators, and cylinders of compressed gas should be located away from heat and securely fastened to a stationary device to prevent accidental capsizing. Fire blankets may be present in the laboratory. Persons with burning clothes should be wrapped in the blanket to smother the flames. The NFPA classifies fires with regard to the type of burning material. It also classifies the type of fire extinguisher that is used to control them. This information is summarized in Table 1–2. The multipurpose ABC fire extinguishers are the most common, A B CChapter 1 | Safety and Quality Assessment 13 but the label should always be checked before using. It is important to be able to operate the fire extinguishers. The acronym PASS can be used to remember the steps in the operation: 1. Pull pin 2. Aim at the base of the fire 3. Squeeze handles 4. Sweep nozzle side to side Physical Hazards Physical hazards are not unique to the laboratory, and routine precautions observed outside the workplace apply. General precautions to consider are to avoid running in rooms and hallways, watch for wet HAZARDOUS MATERIALS CLASSIFICATION HEALTH HAZARD FIRE HAZARD Flash Point 4 Deadly 3 Extreme Danger 2 Hazardous 1 Slightly Hazardous 0 Normal Material 4 Below 73 F 3 Below 100 F 2 Below 200 F 1 Above 200 F 0 Will not burn SPECIFIC HAZARD REACTIVITY Oxidizer Acid Alkali Corrosive Use No Water Radiation OXY ACID ALK COR W 4 May deteriorate 3 Shock and heat may deteriorate 2 Violent chemical change 1 Unstable if heated 0 Stable 2 3 1 W Figure 1–6 NFPA hazardous material symbols. Table 1–2 Types of Fires and Fire Extinguishers Type/Composition Fire Type Extinguishing Material of Fire Extinguisher Class A Class B Class C Class D Class K Class A Class B Class C None Class ABC Class K Water Dry chemicals, carbon dioxide, foam, or halon Dry chemicals, carbon dioxide, or halon Sand or dry powder Dry chemicals Liquid designed to prevent splashing and cool the fire. Wood, paper, clothing Flammable organic chemicals Electrical Combustible metals Grease, oils, fats From Strasinger, SK and DiLorenzo, MA: The Phlebotomy Textbook, third edition, FA Davis, Philadelphia, 2011, p.73, with permission. floors, bend the knees when lifting heavy objects, keep long hair pulled back, avoid dangling jewelry, and maintain a clean, organized work area. Closed-toed shoes that provide maximum support are essential for safety and comfort. Q U A L I T Y A S S E S S M E N T The term quality assessment (QA) refers to the overall process of guaranteeing quality patient care and is regulated throughout the total testing system. Quality system refers to all of the laboratory’s policies, processes, procedures, and resources needed to achieve quality testing.15 In a clinical laboratory, a quality assessment program includes not only testing controls, referred to as quality control (QC), but also encompasses preexamination variables (e.g., specimen collection, handling, and storage), examination variables (e.g., reagent and test performance, instrument calibration and maintenance, personnel requirements, and technical competence), postexamination variables (e.g., reporting of results and interpretation), and documentation that the program is being meticulously followed. The original terms preanalytical, analytical, and postanalytical have been replaced with the International Organization for Standardization (ISO) standard terms of preexamination, examination, and postexamination. Included in a QA program are procedure manuals, internal quality control, external quality control, electronic quality control, calibration or calibration verification, standardization, proficiency testing (PT), more formally known as external quality assessment (EQA),16 record keeping, equipment maintenance, safety programs, training, education and competency assessment of personnel, and a scheduled and documented review process. Essentially, QA is the continual monitoring of the entire test process from test ordering and specimen collection through reporting and interpreting results. Written policies and documented actions as they relate to the patient, the laboratory, ancillary personnel, and the health-care provider are required. Having written remedial actions mandating the steps to take when any part of the system fails is essential to a QA program. QA in the urinalysis laboratory—or any other laboratory department—is an integration of many factors. This section14 Part One | Background will provide a collection of the procedures essential for providing quality urinalysis. In the following chapters, the methods of ensuring accurate results will be covered on an individual basis for each of the tests. Documentation of QA procedures is required by all laboratory accreditation agencies, including the Joint Commission (JC), College of American Pathologists (CAP), American Association of Blood Banks (AABB), American Osteopathic Association (AOA), American Society of Histocompatibility and Immunogenetics (ASHI), and the Commission on Laboratory Assessment (COLA); it is also required for Medicare reimbursement. Guidelines published by CAP and the CLSI provide very complete instructions for documentation and are used as a reference for the ensuing discussion of the specific areas of urinalysis QC and QA.16–18 Documentation in the form of a procedure manual is required in all laboratories, and this format is used as the basis for the following discussion. Urinalysis Procedure Manual A procedure manual containing all the procedures performed in the urinalysis section must be available for reference in the working area and must comply with the CLSI guidelines. The following information is included for each procedure: principle or purpose of the test, clinical significance, patient preparation, specimen type and method of collection, specimen acceptability and criteria for rejection, reagents, standards and controls, instrument calibration and maintenance protocols and schedules, stepby-step procedure, calculations, frequency and tolerance limits for controls and corrective actions, reference values and critical values, interpretation of results, specific procedure notes, limitations of the method, method validation, confirmatory testing, recording of results, references, effective date, author, and review schedule. Current package inserts should be reviewed and available at the workplace. Electronic manuals are acceptable and must be readily available to all personnel. As with written procedural manuals, electronic versions must be subjected to proper document control (i.e., only authorized persons may make changes, changes are dated/signed [manually or electronically], and there is documentation of periodic review).17,18 Evaluating procedures and adopting new methodologies is an ongoing process in the clinical laboratory. Whenever changes are made, the procedure should be reviewed, referenced, and signed by a person with designated authority, such as the laboratory director or section supervisor (Fig. 1–7), and personnel should be notified of the changes. Documentation of an annual review of all procedures by the designated authority must also be substantiated. Preexamination Variables Preexamination variables occur before the actual testing of the specimen and include test requests, patient preparation, timing, specimen collection, handling, and storage. Health-care personnel outside the clinical laboratory control many of these factors, such as ordering tests and specimen collection. Communication between departments and adequate training on the correct procedures for ordering a test, collecting, and transporting the specimen improves the turnaround time (TAT) of results, avoids duplication of test orders, and ensures a high-quality specimen. TAT is defined as the amount of time required from the point at which a test is ordered by the health-care provider until the results are reported to the health-care provider. Laboratories determine the TAT for tests including both stat and routine tests as appropriate. The laboratory can then monitor the TATs to determine areas in the process that need improvement. This can be determined by creating a cause-and-effect diagram, as shown in Figure 1–8. Specimen Collection and Handling Specific information on specimen collection and handling should be stated at the beginning of each procedure listed in the manual. Requisition forms and computerized entry forms should designate the type of urine specimen to be collected and the date and time of collection. The form should include space for recording (1) the actual date and time of specimen collection, (2) whether the specimen was refrigerated before transporting, (3) the time the specimen was received in the laboratory and the time the test was performed, (4) tests requested, (5) an area for specific instructions that might affect the results of the analysis, and (6) patient identification information.18 The patient’s sex, age or date of birth, and, when appropriate, the source of the specimen and the time it was collected must be documented.15 Patient preparation (e.g., fasting or elimination of interfering medications), type and volume of specimen required, URINALYSIS SECTION SPECIMEN ACCEPTABILITY/LABELING Prepared by: Initial approval: Procedure placed in use: Revised: Reason for revision: Effective Date Reviewed Reviewed Reviewed Reviewed Reviewed Supervisor Approval Medical Director Approval Figure 1–7 Example of procedure review documentation. (Adapted from the Department of Pathology, St. Joseph Hospital, Omaha, NE.)Chapter 1 | Safety and Quality Assessment 15 and the need for sterile or opaque containers must be included with the specific procedure. All urine specimens should be examined within 2 hours. If this is not possible, written instructions for preserving the specimen must be available.18 Instructions of a general nature, such as procedures for collecting clean-catch and timed specimens, specimen processing, and printed instructions that are given to patients, are also included in the manual. Criteria for specimen rejection for both physical characteristics and labeling errors must be present. In Table 1–3 is Wrong specimen tested Interfering substances Procedure failure Inadequate volume Missed collection Insufficient urine volume Special conditions not followed Instrument malfunction Failure to send report Report not charted Printer error Computer down Incorrect specimen type Delayed delivery Patient misidentification Lost label Incorrect container Time of collection not indicated Incomplete requisition No requisition Missed pick-up Distance Insufficient container Specimen misplaced Transport staff unavailable Leaking closure lid Incorrect storage No chemical preservative Not refrigerated Patient preparation Not fasting Medications CAUSE-AND-EFFECT DIAGRAM Test analysis UA results TAT Reporting URINALYSIS TURN-AROUND-TIME (TAT) Contaminated specimen container Collection Transport Figure 1–8 Cause-and-effect diagram for analyzing urinalysis TAT. Do NOT assume any information about the specimen or patient. Do NOT relabel an incorrectly labeled specimen. Do NOT discard the specimen until investigation is complete. Leave specimen EXACTLY as you receive it; put in the refrigerator for preservation until errors can be resolved. Notify floor, nursing station, doctor’s office, etc. of problem and why it must be corrected for analysis to continue. Identify problem on specimen requisition with date, time, and your initials. Make person responsible for specimen collection participate in solution of problem(s). Any action taken should be documented on the requisition slip. Report all mislabeled specimens to the appropriate supervisor. Table 1–3 Policy for Handling Mislabeled Specimens From Schweitzer, SC, Schumann, JL, and Schumann, GB: Quality assurance guidelines for the urinalysis laboratory. Journal of Medical Technology 3(11): 568, 1986, with permission. an example of a policy for handling mislabelled specimens. Written criteria for rejecting specimens must be documented and available to the health-care provider and nursing staff.18 Table 1–4 lists the criteria for urine specimen rejection. Laboratory personnel must determine the suitability of a specimen and document any problems and corrective actions taken. An example of an internal laboratory quality improvement form is shown in Figure 1–9. It is used as a tool to document a problem at the point of discovery, describing what happened and the immediate corrective action taken. This16 Part One | Background enables the laboratory director to capture the information to determine the root cause analysis and develop a preventive or corrective action plan. Laboratory information systems have the capability to electronically generate these forms for review. An acceptable specimen requires verification of the patient’s identification information on the requisition form and the container label, timely transport to the laboratory, the presence of refrigeration or recommended preservative if transport was delayed, and collection of an adequate amount of the correct urine specimen type in a noncontaminated, tightly closed container.18 Examination Variables The examination variables are the processes that directly affect the testing of specimens. They include reagents, instrumentation and equipment, testing procedure, QC, preventive maintenance (PM), access to procedure manuals, and competency of personnel performing the tests. Reagents The manual should state the name and chemical formula of each reagent used, instructions for preparation, when necessary, or company source of prepared materials, storage requirements, and procedures for reagent QC. The type of water used for preparing reagents and controls must be specified. Distilled or deionized water or clinical laboratory reagent water (CLRW) must be available. A bold-type statement of any safety or health precautions associated with reagents should be present. An example of this would be the heat produced in the Clinitest reaction. All reagents and reagent strips must be properly labeled with the date of preparation or opening, purchase and received date, expiration date, and appropriate safety information. Reagent strips should be checked against known negative and positive control solutions on each shift or at a minimum once a day, and whenever a new bottle is opened. Reagents are checked daily or when tests requiring their use are requested. Results of all reagent checks are properly recorded. Reagent strips must never be refrigerated, and must be recapped immediately after removing each strip. Instrumentation and Equipment Instructions regarding the operation, performance and frequency of calibration, limitations, and procedures to follow when limitations or linearity are exceeded, such as dilution procedures, must be clearly stated in the procedure manual. Instructions detailing the appropriate recording procedures must be included. The most frequently encountered instruments in the urinalysis laboratory are refractometers, osmometers, automated reagent strip readers, and automated microscopy instruments. Refractometers are calibrated on each shift against deionized water (1.000) and a known control, such as 5% saline (1.022 ± 0.001) or 9% sucrose (1.034 ± 0.001). Two levels of commercial controls are available for the osmometer, urine reagent [Show More]
Last updated: 2 years ago
Preview 1 out of 337 pages
Buy this document to get the full access instantly
Instant Download Access after purchase
Buy NowInstant download
We Accept:
Can't find what you want? Try our AI powered Search
Connected school, study & course
About the document
Uploaded On
Apr 21, 2021
Number of pages
337
Written in
This document has been written for:
Uploaded
Apr 21, 2021
Downloads
0
Views
154
In Scholarfriends, a student can earn by offering help to other student. Students can help other students with materials by upploading their notes and earn money.
We're available through e-mail, Twitter, Facebook, and live chat.
FAQ
Questions? Leave a message!
Copyright © Scholarfriends · High quality services·