Engineering > TEST BANKS > SOLUTION MANUAL ENGINEERING ELECTROMAGNETICS BY WILLIAM H. HAYT 8TH EDITION COMPLETE CHAPTERS (All)
CHAPTER 1 1.1. Given the vectors M = −10ax + 4ay − 8az and N = 8ax + 7ay − 2az, find: a) a unit vector in the direction of −M + 2N. −M + 2N = 10ax − 4ay + 8az + 16ax + 14ay − 4az = (2... 6, 10, 4) Thus a = (26, 10, 4) |(26, 10, 4)| = (0.92, 0.36, 0.14) b) the magnitude of 5ax + N − 3M: (5, 0, 0) + (8, 7, −2) − (−30, 12, −24) = (43, −5, 22), and |(43, −5, 22)| = 48.6. c) |M||2N|(M + N): |(−10, 4, −8)||(16, 14, −4)|(−2, 11, −10) = (13.4)(21.6)(−2, 11, −10) = (−580.5, 3193, −2902) 1.2. Given three points, A(4, 3, 2), B(−2, 0, 5), and C(7, −2, 1): a) Specify the vector A extending from the origin to the point A. A = (4, 3, 2) = 4ax + 3ay + 2az b) Give a unit vector extending from the origin to the midpoint of line AB. The vector from the origin to the midpoint is given by M = (1/2)(A + B) = (1/2)(4 − 2, 3 + 0, 2 + 5) = (1, 1.5, 3.5) The unit vector will be m = (1, 1.5, 3.5) |(1, 1.5, 3.5)| = (0.25, 0.38, 0.89) c) Calculate the length of the perimeter of triangle ABC: Begin with AB = (−6, −3, 3), BC = (9, −2, −4), CA = (3, −5, −1). Then |AB| + |BC| + |CA| = 7.35 + 10.05 + 5.91 = 23.32 1.3. The vector from the origin to the point A is given as (6, −2, −4), and the unit vector directed from the origin toward point B is (2, −2, 1)/3. If points A and B are ten units apart, find the coordinates of point B. With A = (6, −2, −4) and B = 13B(2, −2, 1), we use the fact that |B − A| = 10, or |(6 − 23B)ax − (2 − 23B)ay − (4 + 13B)az| = 10 Expanding, obtain 36 − 8B + 4 9B2 + 4 − 8 3B + 49B2 + 16 + 83B + 19B2 = 100 or B2 − 8B − 44 = 0. Thus B = 8±√64−176 2 = 11.75 (taking positive option) and so B = 2 3 (11.75)ax − 2 3 (11.75)ay + 1 3 (11.75)az = 7.83ax − 7.83ay + 3.92az 1 [Show More]
Last updated: 2 years ago
Preview 1 out of 259 pages
Buy this document to get the full access instantly
Instant Download Access after purchase
Buy NowInstant download
We Accept:
Can't find what you want? Try our AI powered Search
Connected school, study & course
About the document
Uploaded On
May 15, 2022
Number of pages
259
Written in
This document has been written for:
Uploaded
May 15, 2022
Downloads
0
Views
107
In Scholarfriends, a student can earn by offering help to other student. Students can help other students with materials by upploading their notes and earn money.
We're available through e-mail, Twitter, Facebook, and live chat.
FAQ
Questions? Leave a message!
Copyright © Scholarfriends · High quality services·