Mathematics > Study Notes > Stanford UniversityMATH 51math 51 notes 2007 (All)

Stanford UniversityMATH 51math 51 notes 2007

Document Content and Description Below

Math 51 TA notes — Autumn 2007 Jonathan Lee December 3, 2007 Minor revisions aside, these notes are now essentially final. Nevertheless, I do welcome comments! Go to http://math.stanford.edu/~j... lee/math51/ to find these notes online. Contents 1 Linear Algebra — Levandosky’s book 2 1.1 Vectors in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Linear Combinations and Spans . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Dot Products and Cross Products . . . . . . . . . . . . . . . . . . . . . . . . 3 1.5 Systems of Linear Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.6 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.7 Matrix-Vector Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.8 Nullspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.9 Column space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.10 Subspaces of Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.11 Basis for a Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.12 Dimension of a Subspace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.13 Linear Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.14 Examples of Linear Transformations . . . . . . . . . . . . . . . . . . . . . . 7 1.15 Composition and Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . 8 1.16 Inverses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 1.17 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.21 Systems of Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 1.23 Eigenvectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.25 Symmetric matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.26 Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 12 Vector Calculus — Colley’s book 11 2.2 Differentiation in Several Variables . . . . . . . . . . . . . . . . . . . . . . . 11 2.2.1 Functions of Several Variables . . . . . . . . . . . . . . . . . . . . . . 11 2.2.2 Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.2.3 The derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.2.4 Properties of the Derivative; Higher Order Derivatives . . . . . . . . . 15 2.2.5 The Chain Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.2.6 Directional Derivatives and the Gradient . . . . . . . . . . . . . . . . 15 2.3 Vector-Valued Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.1 Parametrized curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.4 Maxima and Minima in Several Variables . . . . . . . . . . . . . . . . . . . . 16 2.4.1 Differentials and Taylor’s Theorem . . . . . . . . . . . . . . . . . . . 16 2.4.2 Extrema of Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.4.3 Lagrange Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4.4 Some Applications of Extrema . . . . . . . . . . . . . . . . . . . . . . 19 1 Linear Algebra — Levandosky’s book • useful (non-)Greek letters: α, β, γ, δ, u, v, x, y, z 1.1 Vectors in Rn • a vector in Rn is an ordered list of n real numbers; there are two basic vector operations in Rn: addition and scalar multiplication • examples of vector space axioms — commutativity, associativity — “can add in any order” • standard position — vector’s tail is at the origin 1.2 Linear Combinations and Spans • a linear combination of vectors {v1, . . . , vk} in Rn is a sum of scalar multiples of the vi • the span is the set of all linear combinations • a line L in Rn has a parametric representation L = {x0 + αv : α ∈ R} with parameter α • given two distinct points on a line, we can find its parametric representation; can also parametrize line segments 2• two non-zero vectors in Rn will span either a line or a plane; the former happens if they’re collinear (or one is redundant) • a plane P in Rn has a parametric representation P = {x0 + αv1 + βv2 : α, β ∈ R} with parameters α and β • given three non-collinear points on a plane, we can find its parametric representation • checking for redundancy — “row reduction” 1.3 Linear Independence [Show More]

Last updated: 2 years ago

Preview 1 out of 19 pages

Buy Now

Instant download

We Accept:

We Accept
document-preview

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

We Accept

Reviews( 0 )

$15.00

Buy Now

We Accept:

We Accept

Instant download

Can't find what you want? Try our AI powered Search

113
0

Document information


Connected school, study & course


About the document


Uploaded On

Aug 28, 2021

Number of pages

19

Written in

Seller


seller-icon
Cheryshev

Member since 4 years

102 Documents Sold

Reviews Received
6
4
1
0
1
Additional information

This document has been written for:

Uploaded

Aug 28, 2021

Downloads

 0

Views

 113

Document Keyword Tags


$15.00
What is Scholarfriends

In Scholarfriends, a student can earn by offering help to other student. Students can help other students with materials by upploading their notes and earn money.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·