Calculus > QUESTIONS & ANSWERS > Chapter 3: DIFFERENTIATION RULES. Work And Answers (All)

Chapter 3: DIFFERENTIATION RULES. Work And Answers

Document Content and Description Below

3.1 Derivatives of Polynomials and Exponential Functions 1. (a)  is the number such that lim →0  − 1  = 1. (b)  27 − 1  −0001 09928 −00001 09... 932 0001 09937 00001 09933  28 − 1  −0001 10291 −00001 10296 0001 10301 00001 10297 From the tables (to two decimal places), lim →0 27 − 1  = 099 and lim →0 28− 1 = 103. Since 099  1  103, 27    28. 2. (a) The function value at  = 0 is 1 and the slope at  = 0 is 1. (b) () =  is an exponential function and () =  is a power function.   () =  and   () = −1. (c) () =  grows more rapidly than () =  when  is large. 3. () = 240 is a constant function, so its derivative is 0, that is,  0() = 0. 4. () = 5 is a constant function, so its derivative is 0, that is,  0() = 0. 5. () = 52 + 23 ⇒  0() = 52(1) + 0 = 52 6. () = 7 42 − 3 + 12 ⇒ 0() = 7 4(2) − 3(1) + 0 = 7 2 − 3 7. () = 23 − 32 − 4 ⇒  0() = 2(32) − 3(2) − 4(1) = 62 − 6 − 4 8. () = 145 − 252 + 67 ⇒  0() = 14(54) − 25(2) + 0 = 74 − 5 9. () = 2(1 − 2) = 2 − 23 ⇒ 0() = 2 − 2(32) = 2 − 62 10. () = (3 − 1)( + 2) = 32 + 5 − 2 ⇒ 0() = 3(2) + 5(1) − 0 = 6 + 5 11. () = 2−34 ⇒ 0() = 2− 3 4−74 = − 3 2−74 12. () = −6 ⇒ 0() = (−6−7) = −6−7 13. () = 5 3 = 5−3 ⇒  0() = 5(−3−4) = −15−4 = −15 4 14.  = 53 − 23 ⇒ 0 = 5 323 − 2 3−13 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. 167 NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.168 ¤ CHAPTER 3 DIFFERENTIATION RULES 15. () = (3 + 1)2 = 92 + 6 + 1 ⇒ 0() = 9(2) + 6(1) + 0 = 18 + 6 16. () = √4  − 4 = 14 − 4 ⇒ 0() = 1 4−34 − 4() = 1 4−34 − 4 17. () = √ −  = 12 −  ⇒ 0() = 1 2−12 − 1 or 2√1  − 1 18.  = √3  (2 + ) = 213 + 43 ⇒ 0 = 2 1 3−23 + 4 313 = 2 3−23 + 4 313 or 3√322 + 43 √3  19.  = 3 + √34 = 3 + 4−13 ⇒ 0 = 3() + 4(− 1 3)−43 = 3 − 4 3−43 20. () = 42 ⇒ 0() = 4(2) = 8 21. () = 3 + 2 +  ⇒ 0() = (32) + (2) + (1) = 32 + 2 +  22.  = √ +  2 = √ 2 +  2 = 12−2 + 1−2 = −32 + −1 ⇒ 0 = − 3 2−52 + (−1−2) = − 3 2−52 − −2 23.  = 2 + 4 √ + 3 = 32 + 412 + 3−12 ⇒ 0 = 3 212 + 4 1 2−12 + 3− 1 2−32 = 3 2 √ + √2 − 23√ note that 32 = 22 · 12 =  √  The last expression can be written as 32 2 √ + 4 2 √ − 3 2 √ = 32 + 4 − 3 2 √ . 24. () = √5 + √7  = √5 12 + √7 −1 ⇒ 0() = √5  1 2−12 + √7 −1−2 = 2√√5 − √27 25. () = 24 + 24 ⇒ 0() = 2414 + 0 = 2414 26. () =  +  ⇒ 0() =  + −1 27. () = 1 + −12 = 1 + 2−1 + −2 ⇒ 0() = 0 + 2(−1−2) + (−2−3) = −2−2 − 2−3 28. () =  +  + 2 2 =  2 +  2 + 2 2 = −2 + −1 +  ⇒  0() = (−2−3) + (−1−2) + 0 = −2−3 − −2 = −2 3 −  2 or − 2 +  3 29. () = √3  − 2  = √3   − 2  = −23 − 2 ⇒  0() = − 2 3−53 − 2 30. () = 1 + 162 (4)3 = 1 + 162 643 = 1 64−3 + 1 4−1 ⇒ 0() = 64 1 (−3−4) + 1 4(−1−2) = − 64 3 −4 − 1 4−2 or −6434 − 412 31.  =  10 +  = −10 +  ⇒ 0 = −10−11 +  = −10 11  +  32.  = +1 + 1 = 1 + 1 =  ·  + 1 ⇒ 0 =  ·  = +1 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.1 DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS ¤ 169 33.  = 23 − 2 + 2 ⇒ 0 = 62 − 2. At (1 3), 0 = 6(1)2 − 2(1) = 4 and an equation of the tangent line is  − 3 = 4( − 1) or  = 4 − 1. 34.  = 2 +  ⇒ 0 = 2 + 1. At (0 2), 0 = 20 + 1 = 3 and an equation of the tangent line is  − 2 = 3( − 0) or  = 3 + 2. 35.  =  + 2  =  + 2−1 ⇒ 0 = 1 − 2−2. At (2 3), 0 = 1 − 2(2)−2 = 1 2 and an equation of the tangent line is  − 3 = 1 2( − 2) or  = 1 2 + 2. 36.  = √4  −  = 14 −  ⇒ 0 = 1 4−34 − 1 = 1 4√4 3 − 1. At (1 0), 0 = 1 4 − 1 = − 3 4 and an equation of the tangent line is  − 0 = − 3 4( − 1) or  = − 3 4 + 3 4. 37.  = 4 + 2 ⇒ 0 = 43 + 2. At (0 2), 0 = 2 and an equation of the tangent line is  − 2 = 2( − 0) or  = 2 + 2. The slope of the normal line is − 1 2 (the negative reciprocal of 2) and an equation of the normal line is  − 2 = − 1 2( − 0) or  = − 1 2 + 2. 38. 2 = 3 ⇒  = 32 [since  and  are positive at (1 1)] ⇒ 0 = 3 212. At (1 1), 0 = 3 2 and an equation of the tangent line is  − 1 = 3 2( − 1) or  = 3 2 − 1 2. The slope of the normal line is − 2 3 the negative reciprocal of 3 2 and an equation of the normal line is  − 1 = − 2 3( − 1) or  = − 2 3 + 5 3. 39.  = 32 − 3 ⇒ 0 = 6 − 32. At (1 2), 0 = 6 − 3 = 3, so an equation of the tangent line is  − 2 = 3( − 1) or  = 3 − 1. 40.  =  − √ ⇒ 0 = 1 − 1 2−12 = 1 − 1 2 √ . At (1 0), 0 = 1 2, so an equation of the tangent line is  − 0 = 1 2( − 1) or  = 1 2 − 1 2. 41. () = 4 − 23 + 2 ⇒  0() = 43 − 62 + 2 Note that  0() = 0 when  has a horizontal tangent,  0 is positive when  is increasing, and  0 is negative when  is decreasing. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.170 ¤ CHAPTER 3 DIFFERENTIATION RULES 42. () = 5 − 23 +  − 1 ⇒  0() = 54 − 62 + 1 Note that  0() = 0 when  has a horizontal tangent,  0 is positive when  is increasing, and  0 is negative when  is decreasing. 43. (a) (b) From the graph in part (a), it appears that  0 is zero at 1 ≈ −125, 2 ≈ 05, and 3 ≈ 3. The slopes are negative (so  0 is negative) on (−∞ 1) and (2 3). The slopes are positive (so  0 is positive) on (1 2) and (3 ∞). (c) () = 4 − 33 − 62 + 7 + 30 ⇒  0() = 43 − 92 − 12 + 7 44. (a) (b) From the graph in part (a), it appears that  0 is zero at 1 ≈ 02 and 2 ≈ 28. The slopes are positive (so  0 is positive) on (−∞ 1) and (2 ∞). The slopes are negative (so  0 is negative) on (1 2). (c) () =  − 32 ⇒ 0() =  − 6 45. () = 00015 − 0023 ⇒  0() = 00054 − 0062 ⇒  00() = 0023 − 012 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.1 DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS ¤ 171 46. () = √ + √3  ⇒  0() = 1 2−12 + 1 3−23 ⇒  00() = − 1 4−32 − 2 9−53 47. () = 2 − 534 ⇒  0() = 2 − 15 4 −14 ⇒  00() = 15 16−54 Note that  0 is negative when  is decreasing and positive when  is increasing.  00 is always positive since  0 is always increasing. 48. () =  − 3 ⇒  0() =  − 32 ⇒  00() =  − 6 Note that  0() = 0 when  has a horizontal tangent and that  00() = 0 when  0 has a horizontal tangent. 49. (a)  = 3 − 3 ⇒ () = 0() = 32 − 3 ⇒ () = 0() = 6 (b) (2) = 6(2) = 12 ms2 (c) () = 32 − 3 = 0 when 2 = 1, that is,  = 1 [ ≥ 0] and (1) = 6 ms2. 50. (a)  = 4 − 23 + 2 −  ⇒ () = 0() = 43 − 62 + 2 − 1 ⇒ () = 0() = 122 − 12 + 2 (c) (b) (1) = 12(1)2 − 12(1) + 2 = 2 m s2 51.  = 001553 − 03722 + 395 + 121 ⇒   = 004652 − 0744 + 395, so    =12 = 00465(12)2 − 0744(12) + 395 = 1718. The derivative is the instantaneous rate of change of the length of an Alaskan rockfish with respect to its age when its age is 12 years. 52. () = 08820842 ⇒ 0() = 0882(0842−0158) = 0742644−0158, so 0(100) = 0742644(100)−0158 ≈ 036. The derivative is the instantaneous rate of change of the number of tree species with respect to area. Its units are number of species per square meter. 53. (a)  =   and  = 50 when  = 0106, so  =  = 50(0106) = 53. Thus,  = 53 and  = 53. (b)  = 53 −1 ⇒   = 53(−1 −2) = −532 . When  = 50,   = −50 532 = −000212. The derivative is the instantaneous rate of change of the volume with respect to the pressure at 25 ◦C. Its units are m3kPa. 54. (a)  =  2 +  + , where  ≈ −0275428,  ≈ 1974853, and  ≈ −27355234. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.172 ¤ CHAPTER 3 DIFFERENTIATION RULES (b)   = 2 + . When  = 30,   ≈ 32, and when  = 40,   ≈ −23. The derivative is the instantaneous rate of change of tire life with respect to pressure. Its units are (thousands of miles)(lbin2). When   is positive, tire life is increasing, and when    0, tire life is decreasing. 55. The curve  = 23 + 32 − 12 + 1 has a horizontal tangent when 0 = 62 + 6 − 12 = 0 ⇔ 6(2 +  − 2) = 0 ⇔ 6( + 2)( − 1) = 0 ⇔  = −2 or  = 1. The points on the curve are (−2 21) and (1 −6). 56. () =  − 2 ⇒  0() =  − 2.  0() = 0 ⇒  = 2 ⇒  = ln 2, so  has a horizontal tangent when  = ln 2 57.  = 2 + 3 + 53 ⇒ 0 = 2 + 3 + 152. Since 2  0 and 152 ≥ 0, we must have 0  0 + 3 + 0 = 3, so no tangent line can have slope 2. 58.  = 4 + 1 ⇒ 0 = 43. The slope of the line 32 −  = 15 (or  = 32 − 15) is 32, so the slope of any line parallel to it is also 32. Thus, 0 = 32 ⇔ 43 = 32 ⇔ 3 = 8 ⇔  = 2, which is the -coordinate of the point on the curve at which the slope is 32. The -coordinate is 24 + 1 = 17, so an equation of the tangent line is  − 17 = 32( − 2) or  = 32 − 47. 59. The slope of the line 3 −  = 15 (or  = 3 − 15) is 3, so the slope of both tangent lines to the curve is 3.  = 3 − 32 + 3 − 3 ⇒ 0 = 32 − 6 + 3 = 3(2 − 2 + 1) = 3( − 1)2. Thus, 3( − 1)2 = 3 ⇒ ( − 1)2 = 1 ⇒  − 1 = ±1 ⇒  = 0 or 2, which are the -coordinates at which the tangent lines have slope 3. The points on the curve are (0 −3) and (2 −1), so the tangent line equations are  − (−3) = 3( − 0) or  = 3 − 3 and  − (−1) = 3( − 2) or  = 3 − 7. 60. The slope of  = 1 + 2 − 3 is given by  = 0 = 2 − 3. The slope of 3 −  = 5 ⇔  = 3 − 5 is 3.  = 3 ⇒ 2 − 3 = 3 ⇒  = 3 ⇒  = ln 3. This occurs at the point (ln 3 7 − 3 ln 3) ≈ (11 37). 61. The slope of  = √ is given by  = 1 2−12 = 1 2√. The slope of 2 +  = 1 (or  = −2 + 1) is −2, so the desired normal line must have slope −2, and hence, the tangent line to the curve must have slope 1 2. This occurs if 1 2√ = 1 2 ⇒ √ = 1 ⇒  = 1. When  = 1,  = √1 = 1, and an equation of the normal line is  − 1 = −2( − 1) or  = −2 + 3. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.1 DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS ¤ 173 62.  = () = 2 − 1 ⇒  0() = 2. So  0(−1) = −2, and the slope of the normal line is 1 2. The equation of the normal line at (−1 0) is  − 0 = 1 2[ − (−1)] or  = 1 2 + 1 2. Substituting this into the equation of the parabola, we obtain 1 2 + 1 2 = 2 − 1 ⇔  + 1 = 22 − 2 ⇔ 22 −  − 3 = 0 ⇔ (2 − 3)( + 1) = 0 ⇔  = 3 2 or −1. Substituting 3 2 into the equation of the normal line gives us  = 5 4. Thus, the second point of intersection is  3 2 5 4, as shown in the sketch. 63. Let  2 be a point on the parabola at which the tangent line passes through the point (0 −4). The tangent line has slope 2 and equation  − (−4) = 2( − 0) ⇔  = 2 − 4. Since  2 also lies on the line, 2 = 2() − 4, or 2 = 4. So  = ±2 and the points are (2 4) and (−2 4). 64. (a) If  = 2 + , then 0 = 2 + 1. If the point at which a tangent meets the parabola is  2 + , then the slope of the tangent is 2 + 1. But since it passes through (2 −3), the slope must also be ∆ ∆ = 2 +  + 3  − 2 . Therefore, 2 + 1 = 2 +  + 3  − 2 . Solving this equation for  we get 2 +  + 3 = 22 − 3 − 2 ⇔ 2 − 4 − 5 = ( − 5)( + 1) = 0 ⇔  = 5 or −1. If  = −1, the point is (−1 0) and the slope is −1, so the equation is  − 0 = (−1)( + 1) or  = − − 1. If  = 5, the point is (5 30) and the slope is 11, so the equation is  − 30 = 11( − 5) or  = 11 − 25. (b) As in part (a), but using the point (2 7), we get the equation 2 + 1 = 2 +  − 7  − 2 ⇒ 22 − 3 − 2 = 2 +  − 7 ⇔ 2 − 4 + 5 = 0. The last equation has no real solution (discriminant = −16  0), so there is no line through the point (2 7) that is tangent to the parabola. The diagram shows that the point (2 7) is “inside” the parabola, but tangent lines to the parabola do not pass through points inside the parabola. 65.  0() = lim →0 ( + ) − ()  = lim →0 1  +  − 1   = lim →0  −((++)) = lim →0 (− + ) = lim →0 (−+1 ) = −12 66. (a) () =  ⇒  0() = −1 ⇒  00() = ( − 1)−2 ⇒ · · · ⇒  ()() = ( − 1)( − 2) · · · 2 · 1− = ! (b) () = −1 ⇒  0() = (−1)−2 ⇒  00() = (−1)(−2)−3 ⇒ · · · ⇒  ()() = (−1)(−2)(−3) · · · (−)−(+1) = (−1)!−(+1) or (−1) ! +1 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.174 ¤ CHAPTER 3 DIFFERENTIATION RULES 67. Let () = 2 +  + . Then  0() = 2 +  and  00() = 2.  00(2) = 2 ⇒ 2 = 2 ⇒  = 1.  0(2) = 3 ⇒ 2(1)(2) +  = 3 ⇒ 4 +  = 3 ⇒  = −1. (2) = 5 ⇒ 1(2)2 + (−1)(2) +  = 5 ⇒ 2 +  = 5 ⇒  = 3. So () = 2 −  + 3. 68.  = 2 +  +  ⇒ 0 = 2 +  ⇒ 00 = 2. We substitute these expressions into the equation 00 + 0 − 2 = 2 to get (2) + (2 + ) − 2(2 +  + ) = 2 2 + 2 +  − 22 − 2 − 2 = 2 (−2)2 + (2 − 2) + (2 +  − 2) = (1)2 + (0) + (0) The coefficients of 2 on each side must be equal, so −2 = 1 ⇒  = − 1 2. Similarly, 2 − 2 = 0 ⇒  =  = − 1 2 and 2 +  − 2 = 0 ⇒ −1 − 1 2 − 2 = 0 ⇒  = − 3 4. 69.  = () = 3 + 2 +  +  ⇒  0() = 32 + 2 + . The point (−2 6) is on , so (−2) = 6 ⇒ −8 + 4 − 2 +  = 6 (1). The point (2 0) is on , so (2) = 0 ⇒ 8 + 4 + 2 +  = 0 (2). Since there are horizontal tangents at (−2 6) and (2 0),  0(±2) = 0.  0(−2) = 0 ⇒ 12 − 4 +  = 0 (3) and  0(2) = 0 ⇒ 12 + 4 +  = 0 (4). Subtracting equation (3) from (4) gives 8 = 0 ⇒  = 0. Adding (1) and (2) gives 8 + 2 = 6, so  = 3 since  = 0. From (3) we have  = −12, so (2) becomes 8 + 4(0) + 2(−12) + 3 = 0 ⇒ 3 = 16 ⇒  = 3 16. Now  = −12 = −12 16 3  = − 9 4 and the desired cubic function is  = 16 3 3 − 9 4 + 3. 70.  = 2 +  +  ⇒ 0() = 2 + . The parabola has slope 4 at  = 1 and slope −8 at  = −1, so 0(1) = 4 ⇒ 2 +  = 4 (1) and 0(−1) = −8 ⇒ −2 +  = −8 (2). Adding (1) and (2) gives us 2 = −4 ⇔  = −2. From (1), 2 − 2 = 4 ⇔  = 3. Thus, the equation of the parabola is  = 32 − 2 + . Since it passes through the point (2 15), we have 15 = 3(2)2 − 2(2) +  ⇒  = 7, so the equation is  = 32 − 2 + 7. 71. () =  2+ 1 + 1 if if    ≥ 1 1 Calculate the left- and right-hand derivatives as defined in Exercise 2.8.64: −0 (1) = lim →0− (1 + ) − (1)  = lim →0− [(1 + )2 + 1]  − (1 + 1) = lim →0− 2 + 2   = lim →0−( + 2) = 2 and +0 (1) = lim →0+ (1 + ) − (1)  = lim →0+ [(1 + ) + 1]  − (1 + 1) = lim →0+   = lim →0+ 1 = 1. Since the left and right limits are different, lim →0 (1 + ) − (1)  does not exist, that is,  0(1) does not exist. Therefore,  is not differentiable at 1. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.1 DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS ¤ 175 72. () =  2 if  ≤ 0 2 − 2 if 0    2 2 −  if  ≥ 2 Investigate the left- and right-hand derivatives at  = 0 and  = 2: −0 (0) = lim →0− (0 + ) − (0)  = lim →0− 2 −2(0) = 2 and +0 (0) = lim →0+ (0 + ) − (0)  = lim →0+ (2 − 2 ) − 2(0) = lim →0+(2 − ) = 2, so  is differentiable at  = 0. −0 (2) = lim →0− (2 + ) − (2)  = lim →0− 2(2 + ) − (2 + )2 − (2 − 2) = lim →0− −2− 2 = lim →0−(−2 − ) = −2 and +0 (2) = lim →0+ (2 + ) − (2)  = lim →0+ [2 − (2 + )] − (2 − 2) = lim →0+ − = lim →0+(−1) = −1, so  is not differentiable at  = 2. Thus, a formula for 0 is 0() =  2 if  ≤ 0 2 − 2 if 0    2 −1 if   2 73. (a) Note that 2 − 9  0 for 2  9 ⇔ ||  3 ⇔ −3    3. So () =  2 − 9 if  ≤ −3 −2 + 9 if −3    3 2 − 9 if  ≥ 3 ⇒  0() =  2 if   −3 −2 if −3    3 2 if   3 =  −22 if if ||||  33 To show that  0(3) does not exist we investigate lim →0 (3 + ) − (3)  by computing the left- and right-hand derivatives defined in Exercise 2.8.64. −0 (3) = lim →0− (3 + ) − (3)  = lim →0− [−(3 + )2 + 9] − 0 = lim →0− (−6 − ) = −6 and +0 (3) = lim →0+ (3 + ) − (3)  = lim →0+ (3 + )2 − 9 − 0  = lim →0+ 6 + 2 = lim →0+(6 + ) = 6. Since the left and right limits are different, lim →0 (3 + ) − (3)  does not exist, that is,  0(3) does not exist. Similarly,  0(−3) does not exist. Therefore,  is not differentiable at 3 or at −3. (b) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.176 ¤ CHAPTER 3 DIFFERENTIATION RULES 74. If  ≥ 1, then () = | − 1| + | + 2| =  − 1 +  + 2 = 2 + 1. If −2    1, then () = −( − 1) +  + 2 = 3. If  ≤ −2, then () = −( − 1) − ( + 2) = −2 − 1. Therefore, () =  −2 − 1 if  ≤ −2 3 if −2    1 2 + 1 if  ≥ 1 ⇒ 0() =  −2 if   −2 0 if −2    1 2 if   1 To see that 0(1) = lim →1 () − (1)  − 1 does not exist, observe that lim →1− () − (1)  − 1 = lim →1− 3 − 3 3 − 1 = 0 but lim →1+ () − (1)  − 1 = lim →1+ 2 − 2  − 1 = 2. Similarly, 0(−2) does not exist. 75. Substituting  = 1 and  = 1 into  = 2 +  gives us  +  = 1 (1). The slope of the tangent line  = 3 − 2 is 3 and the slope of the tangent to the parabola at ( ) is 0 = 2 + . At  = 1, 0 = 3 ⇒ 3 = 2 +  (2). Subtracting (1) from (2) gives us 2 =  and it follows that  = −1. The parabola has equation  = 22 − . 76.  = 4 + 3 + 2 +  +  ⇒ (0) = . Since the tangent line  = 2 + 1 is equal to 1 at  = 0, we must have  = 1. 0 = 43 + 32 + 2 +  ⇒ 0(0) = . Since the slope of the tangent line  = 2 + 1 at  = 0 is 2, we must have  = 2. Now (1) = 1 +  +  +  +  =  +  + 4 and the tangent line  = 2 − 3 at  = 1 has -coordinate −1, so  +  + 4 = −1 or  +  = −5 (1). Also, 0(1) = 4 + 3 + 2 +  = 3 + 2 + 6 and the slope of the tangent line  = 2 − 3 at  = 1 is −3, so 3 + 2 + 6 = −3 or 3 + 2 = −9 (2). Adding −2 times (1) to (2) gives us  = 1 and hence,  = −6. The curve has equation  = 4 + 3 − 62 + 2 + 1. 77.  = () = 2 ⇒  0() = 2. So the slope of the tangent to the parabola at  = 2 is  = 2(2) = 4. The slope of the given line, 2 +  =  ⇔  = −2 + , is seen to be −2, so we must have 4 = −2 ⇔  = − 1 2. So when  = 2, the point in question has -coordinate − 1 2 · 22 = −2. Now we simply require that the given line, whose equation is 2 +  = , pass through the point (2 −2): 2(2) + (−2) =  ⇔  = 2. So we must have  = − 1 2 and  = 2. 78. The slope of the curve  =  √ is 0 =  2 √ and the slope of the tangent line  = 3 2 + 6 is 3 2. These must be equal at the point of tangency   √ , so 2 √  = 3 2 ⇒  = 3 √. The -coordinates must be equal at  = , so  √ = 3 2 + 6 ⇒ 3 √  √ = 3 2 + 6 ⇒ 3 = 3 2 + 6 ⇒ 3 2 = 6 ⇒  = 4. Since  = 3 √, we have  = 3 √4 = 6. 79. The line  = 2 + 3 has slope 2. The parabola  = 2 ⇒ 0 = 2 has slope 2 at  = . Equating slopes gives us 2 = 2, or  = 1. Equating -coordinates at  =  gives us 2 = 2 + 3 ⇔ () = 2 + 3 ⇔ 1 = 2 + 3 ⇔  = −3. Thus,  = 1  = − 1 3 . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.1 DERIVATIVES OF POLYNOMIALS AND EXPONENTIAL FUNCTIONS ¤ 177 80. () = 2 +  +  ⇒  0() = 2 + . The slope of the tangent line at  =  is 2 + , the slope of the tangent line at  =  is 2 + , and the average of those slopes is (2 + ) + (2 + ) 2 =  +  + . The midpoint of the interval [ ] is  +  2 and the slope of the tangent line at the midpoint is 2 +2   +  = ( + ) + . This is equal to  +  + , as required. 81.  is clearly differentiable for   2 and for   2. For   2,  0() = 2, so −0 (2) = 4. For   2,  0() = , so +0 (2) = . For  to be differentiable at  = 2, we need 4 = −0 (2) = +0 (2) = . So () = 4 + . We must also have continuity at  = 2, so 4 = (2) = lim →2+ () = lim →2+ (4 + ) = 8 + . Hence,  = −4. 82. (a)  =  ⇒  =   . Let  =   . The slope of the tangent line at  =  is 0() = −2 . Its equation is  −   = −  2 ( − ) or  = −  2  + 2  , so its -intercept is 2  . Setting  = 0 gives  = 2, so the -intercept is 2. The midpoint of the line segment joining0 2and (2 0) is  =  . (b) We know the - and -intercepts of the tangent line from part (a), so the area of the triangle bounded by the axes and the tangent is 1 2(base)(height) = 1 2 = 1 2(2)(2) = 2, a constant. 83. Solution 1: Let () = 1000. Then, by the definition of a derivative,  0(1) = lim →1 () − (1)  − 1 = lim →1 1000 − 1  − 1 . But this is just the limit we want to find, and we know (from the Power Rule) that  0() = 1000999, so  0(1) = 1000(1)999 = 1000. So lim →1 1000 − 1  − 1 = 1000. Solution 2: Note that (1000 − 1) = ( − 1)(999 + 998 + 997 + · · · + 2 +  + 1). So lim →1 1000 − 1  − 1 = lim →1 ( − 1)(999 + 998 + 997 + · · · + 2 +  + 1)  − 1 = lim →1 (999 + 998 + 997 + · · · + 2 +  + 1) = 1 + 1 + 1 + · · · + 1 + 1 + 1    = 1000, as above. 1000 ones 84. In order for the two tangents to intersect on the -axis, the points of tangency must be at equal distances from the -axis, since the parabola  = 2 is symmetric about the -axis. Say the points of tangency are  2 and − 2, for some   0. Then since the derivative of  = 2 is  = 2, the left-hand tangent has slope −2 and equation  − 2 = −2( + ), or  = −2 − 2, and similarly the right-hand tangent line has equation  − 2 = 2( − ), or  = 2 − 2. So the two lines intersect at 0 −2. Now if the lines are perpendicular, then the product of their slopes is −1, so (−2)(2) = −1 ⇔ 2 = 1 4 ⇔  = 1 2. So the lines intersect at 0 − 1 4. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.178 ¤ CHAPTER 3 DIFFERENTIATION RULES 85.  = 2 ⇒ 0 = 2, so the slope of a tangent line at the point ( 2) is 0 = 2 and the slope of a normal line is −1(2), for  6= 0. The slope of the normal line through the points ( 2) and (0 ) is 2 −   − 0 , so 2 −   = − 1 2 ⇒ 2 −  = − 1 2 ⇒ 2 =  − 1 2. The last equation has two solutions if   1 2, one solution if  = 1 2, and no solution if   1 2. Since the -axis is normal to  = 2 regardless of the value of  (this is the case for  = 0), we have three normal lines if   1 2 and one normal line if  ≤ 1 2. 86. From the sketch, it appears that there may be a line that is tangent to both curves. The slope of the line through the points ( 2) and ( 2 − 2 + 2) is 2 − 2 + 2 − 2  −  . The slope of the tangent line at  is 2 [0 = 2] and at  is 2 − 2 [0 = 2 − 2]. All three slopes are equal, so 2 = 2 − 2 ⇔  =  − 1. Also, 2 − 2 = 2 − 2 + 2 − 2  −  ⇒ 2 − 2 = 2 − 2−+ 2 (−−(1)  − 1)2 ⇒ 2 − 2 = 2 − 2 + 2 − 2 + 2 − 1 ⇒ 2 = 3 ⇒  = 3 2 and  = 3 2 − 1 = 1 2. Thus, an equation of the tangent line at  is  −  1 22 = 2 1 2 − 1 2 or  =  − 1 4. APPLIED PROJECT Building a Better Roller Coaster 1. (a) () = 2 +  +  ⇒  0() = 2 + . The origin is at  : (0) = 0 ⇒  = 0 The slope of the ascent is 08:  0(0) = 08 ⇒  = 08 The slope of the drop is −16:  0(100) = −16 ⇒ 200 +  = −16 (b)  = 08, so 200 +  = −16 ⇒ 200 + 08 = −16 ⇒ 200 = −24 ⇒  = − 24 200 = −0012. Thus, () = −00122 + 08. (c) Since 1 passes through the origin with slope 08, it has equation  = 08. The horizontal distance between  and  is 100, so the -coordinate at  is (100) = −0012(100)2 + 08(100) = −40. Since 2 passes through the point (100 −40) and has slope −16, it has equation  + 40 = −16( − 100) or  = −16 + 120. (d) The difference in elevation between (0 0) and (100 −40) is 0 − (−40) = 40 feet. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.APPLIED PROJECT BUILDING A BETTER ROLLER COASTER ¤ 179 2. (a) Interval Function First Derivative Second Derivative (−∞ 0) 1() = 08 0 1() = 08 00 1() = 0 [0 10) () = 3 + 2 +  +  0() = 32 + 2 +  00() = 6 + 2 [10 90] () = 2 +  +  0() = 2 +  00() = 2 (90 100] () = 3 + 2 +  +  0() = 32 + 2 +  00() = 6 + 2 (100 ∞) 2() = −16 + 120 0 2() = −16 00 2() = 0 There are 4 values of  (0, 10, 90, and 100) for which we must make sure the function values are equal, the first derivative values are equal, and the second derivative values are equal. The third column in the following table contains the value of each side of the condition— these are found after solving the system in part (b). At  = Condition Value Resulting Equation 0 (0) = 1(0) 0  = 0 0(0) = 0 1(0) 4 5  = 08 00(0) = 00 1(0) 0 2 = 0 10 (10) = (10) 68 9 1000 + 100 + 10 +  = 100 + 10 +  0(10) = 0(10) 2 3 300 + 20 +  = 20 +  00(10) = 00(10) − 75 2 60 + 2 = 2 90 (90) = (90) − 220 9 729,000 + 8100 + 90 +  = 8100 + 90 +  0(90) = 0(90) − 22 15 24,300 + 180 +  = 180 +  00(90) = 00(90) − 75 2 540 + 2 = 2 100 (100) = 2(100) −40 1,000,000 + 10,000 + 100 +  = −40 0(100) = 0 2(100) − 8 5 30,000 + 200 +  = −16 00(100) = 00 2(100) 0 600 + 2 = 0 (b) We can arrange our work in a 12 × 12 matrix as follows.            constant 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 08 0 0 0 0 2 0 0 0 0 0 0 0 −100 −10 −1 1000 100 10 1 0 0 0 0 0 −20 −1 0 300 20 1 0 0 0 0 0 0 −2 0 0 60 2 0 0 0 0 0 0 0 −8100 −90 −1 0 0 0 0 729,000 8100 90 1 0 −180 −1 0 0 0 0 0 24,300 180 1 0 0 −2 0 0 0 0 0 0 540 2 0 0 0 0 0 0 0 0 0 0 1,000,000 10,000 100 1 −40 0 0 0 0 0 0 0 30,000 200 1 0 −16 0 0 0 0 0 0 0 600 2 0 0 0 Solving the system gives us the formulas for , , and . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.180 ¤ CHAPTER 3 DIFFERENTIATION RULES  = −0013 = − 1 75  = 093 = 14 15  = −04 = − 4 9  () = − 75 1 2 + 14 15 − 4 9  = −00004 = − 1 2250  = 0  = 08 = 4 5  = 0  () = − 2250 1 3 + 4 5  = 00004 = 2250 1  = −013 = − 15 2  = 1173 = 176 15  = −3244 = − 2920 9  () = 2250 1 3 − 15 2 2 + 176 15  − 2920 9 (c) Graph of 1, , , , and 2: The graph of the five functions as a piecewise-defined function: This is the piecewise-defined function assignment on a TI-83/4 Plus calculator, where Y2 = 1, Y6 = , Y5 = , Y7 = , and Y3 = 2. A comparison of the graphs in part 1(c) and part 2(c): 3.2 The Product and Quotient Rules 1. Product Rule: () = (1 + 22)( − 2) ⇒  0() = (1 + 22)(1 − 2) + ( − 2)(4) = 1 − 2 + 22 − 43 + 42 − 43 = 1 − 2 + 62 − 83. Multiplying first: () = (1 + 22)( − 2) =  − 2 + 23 − 24 ⇒  0() = 1 − 2 + 62 − 83 (equivalent). 2. Quotient Rule: () = 4 − 53 + √ 2 = 4 − 53 + 12 2 ⇒  0() = 2(43 − 152 + 1 2−12) − (4 − 53 + 12)(2) (2)2 = 45 − 154 + 1 232 − 25 + 104 − 232 4 = 25 − 54 − 3 232 4 = 2 − 5 − 3 2−52 Simplifying first: () = 4 − 53 + √ 2 = 2 − 5 + −32 ⇒  0() = 2 − 5 − 3 2−52 (equivalent). For this problem, simplifying first seems to be the better method. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.2 THE PRODUCT AND QUOTIENT RULES ¤ 181 3. By the Product Rule, () = (32 − 5) ⇒  0() = (32 − 5)()0 + (32 − 5)0 = (32 − 5) + (6 − 5) = [(32 − 5) + (6 − 5)] = (32 +  − 5) 4. By the Product Rule, () = ( + 2√ )  ⇒ 0() = ( + 2√ )()0 + ( + 2√ )0 = ( + 2√ ) + 1 + 2 · 1 2−12 = ( + 2√ ) + 1 + 1√  =  + 2√ + 1 + 1√  5. By the Quotient Rule,  =   ⇒ 0 = (1) − () ()2 = (1 − ) ()2 = 1 −   . 6. By the Quotient Rule,  =  1 −  ⇒ 0 = (1 − ) − (−) (1 − )2 =  − 2 + 2 (1 − )2 =  (1 − )2 . The notations PR ⇒ and QR ⇒ indicate the use of the Product and Quotient Rules, respectively. 7. () = 1 + 2 3 − 4 QR ⇒ 0() = (3 − 4)(2) − (1 + 2)(−4) (3 − 4)2 = 6 − 8 + 4 + 8 (3 − 4)2 = 10 (3 − 4)2 8. () = 2 − 2 2 + 1 QR ⇒ 0() = (2 + 1)(2) − (2 − 2)(2) (2 + 1)2 = 42 + 2 − 22 + 4 (2 + 1)2 = 22 + 2 + 4 (2 + 1)2 9. () = ( − √ )( + √ ) ⇒PR 0() = ( − √ ) 1 + 2√1 + ( + √ ) 1 − 2√1 =  + 1 2√ − √ − 1 2 +  − 1 2√ + √ − 1 2 = 2 − 1. An easier method is to simplify first and then differentiate as follows: () = ( − √ )( + √ ) = 2 − (√ )2 = 2 −  ⇒ 0() = 2 − 1 10. () = (3 − 2)(−4 + −2) ⇒PR  0() = (3 − 2)(−4−5 − 2−3) + (−4 + −2)(32 − 2) = −4−2 − 20 + 8−4 + 4−2 + 3−2 − 2−4 + 30 − 2−2 = 1 + −2 + 6−4 11. () = 12 − 34 ( + 53) = (−2 − 3−4)( + 53) ⇒PR  0() = (−2 − 3−4)(1 + 152) + ( + 53)(−2−3 + 12−5) = (−2 + 15 − 3−4 − 45−2) + (−2−2 + 12−4 − 10 + 60−2) = 5 + 14−2 + 9−4 or 5 + 142 + 94 12. () = (1 − )( + ) ⇒PR  0() = (1 − )(1 + ) + ( + )(−) = 12 − ()2 −  − ()2 = 1 −  − 22 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.182 ¤ CHAPTER 3 DIFFERENTIATION RULES 13.  = 2 + 1 3 − 1 QR ⇒ 0 = (3 − 1)(2) − (2 + 1)(32) (3 − 1)2 = (3 − 1)(2) − (2 + 1)(3) (3 − 1)2 = (23 − 2 − 33 − 3) (3 − 1)2 = (−3 − 3 − 2) (3 − 1)2 14.  = √ 2 +  QR ⇒ 0 = (2 + )2√1 − √ (1) (2 + )2 = 1 √ + √ 2 − √ (2 + )2 = 2 +  − 2 2√ (2 + )2 = 2 −  2√(2 + )2 15.  = 3 + 3 2 − 4 + 3 QR ⇒ 0 = (2 − 4 + 3)(32 + 3) − (3 + 3)(2 − 4) (2 − 4 + 3)2 = 34 + 32 − 123 − 12 + 92 + 9 − (24 − 43 + 62 − 12) (2 − 4 + 3)2 = 4 − 83 + 62 + 9 (2 − 4 + 3)2 16.  = 1 3 + 22 − 1 QR ⇒ 0 = (3 + 22 − 1)(0) − 1(32 + 4) (3 + 22 − 1)2 = − 32 + 4 (3 + 22 − 1)2 17.  = ( + √ ) = ( + 32) ⇒PR 0 = 1 + 3 212 + ( + 32) = 1 + 3 2√ +  + √  18. () =   +  QR ⇒ 0() = ( + )() − ()() ( + )2 =  + 2 − 2 ( + )2 =  ( + )2 19.  =  − √ 2 =  2 − √ 2 = −1 − −32 ⇒ 0 = −−2 + 3 2−52 = −21 + 2352 = 32−52√2  20.  = (2 + )√ ⇒PR 0 = (2 + )2√1   + √ (2 + ) = 2√2 + 2√ + 2√ + √  = 2 +  + 42 + 2 2√ = 52 +  + 2 2√ 21. () = √3   − 3 QR ⇒  0() = ( − 3) 1 3−23 − 13(1) ( − 3)2 = 13 13 − −23 − 13 ( − 3)2 = − 23 13 − −23 ( − 3)2 = −2 323 − 3 323 ( − 3)2 = −2 − 3 323( − 3)2 22.  () = 4 +   QR ⇒  0() = (1) − (4 + )( + (1)) ()2 =  − 4 − 4 − 2 −  22 = −4 − 4 − 2 22 = −(2 + 4 + 4) 22 = − ( + 2)2 2 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.2 THE PRODUCT AND QUOTIENT RULES ¤ 183 23. () = 2 2 +  QR ⇒  0() = (2 + ) 2 + (2) − 2(2 + ) (2 + )2 = 4 + 23 + 22 + 22 − 23 − 22 (2 + )2 = 4 + 22 (2 + )2 = (3 + 2) (2 + )2 24. () =  2 + 3 =   + 2 QR ⇒  0() = ( + 2)(0) − ( + 2) ( + 2)2 = −( + 2) ()2( + )2 = − ( + 2) 2( + )2 25. () =   +  ⇒  0() = ( + )(1)  +−(1 2 − 2) =  + 2−+ +2 = (2 2 +2 )2 ·  2 2 = (22+)2 26. () =  +   +  ⇒  0() = ( + )( ( ) +− ( )2 + )() =  +(  +− )2 −  = (  +−)2 27. () = (3 + 1) ⇒PR  0() = (3 + 1) + (32) = (3 + 1) + 32 = (3 + 32 + 1) ⇒PR  00() = (32 + 6) + (3 + 32 + 1) = (32 + 6) + (3 + 32 + 1) = (3 + 62 + 6 + 1) 28. () = √  ⇒PR  0() = √  + 2√1  = √ + 2√1  = 22√+ 1  . Using the Product Rule and  0() = 12 + 1 2−12, we get  00() = 12 + 1 2−12 +  1 2−12 − 1 4−32 = 12 + −12 − 1 4−32 = 424+ 4 32− 1  29. () = 2 1 +  QR ⇒  0() = (1 + )(2) − 2() (1 + )2 = [(1 + )2 − ] (1 + )2 = (2 + 2 − ) (1 + )2 . Using the Quotient and Product Rules and  0() = 2 + 2 − 2 (1 + )2 , we get  00() = (1 + )2 2 + 2( + ) − (2 + 2) − (2 + 2 − 2) [(1 + ) + (1 + )] [(1 + )2]2 = (1 + ) (1 + )(2 + 2 + 2 − 2 − 2) − (2 + 2 − 2)(2) (1 + )4 = (1 + )(2 + 2 − 2) − 4 − 42 + 222 (1 + )3 = 2 + 2 − 2 + 2 + 22 − 22 − 4 − 42 + 222 (1 + )3 = 2 + 4 − 2 − 4 + 22 + 22 − 42 (1 + )3 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.184 ¤ CHAPTER 3 DIFFERENTIATION RULES 30. () =  2 − 1 ⇒  0() = (2 −(1)(1) 2 − 1) −2(2) = 2(−21−−1)222 = (−22−−1)12 ⇒  00() = (2 − 1)2(−2) − (−2 − 1)(4 − 22 + 1)0 [(2 − 1)2]2 = (2 − 1)2(−2) + (2 + 1)(43 − 4) (2 − 1)4 = (2 − 1)2(−2) + (2 + 1)(4)(2 − 1) (2 − 1)4 = (2 − 1)[(2 − 1)(−2) + (2 + 1)(4)] (2 − 1)4 = −23 + 2 + 43 + 4 (2 − 1)3 = 23 + 6 (2 − 1)3 31.  = 2 − 1 2 +  + 1 ⇒ 0 = (2 +  + 1)(2) − (2 − 1)(2 + 1) (2 +  + 1)2 = 23 + 22 + 2 − 23 − 2 + 2 + 1 (2 +  + 1)2 = 2 + 4 + 1 (2 +  + 1)2 . At (1 0), 0 = 6 32 = 2 3 , and an equation of the tangent line is  − 0 = 2 3( − 1), or  = 2 3 − 2 3. 32.  = 1 +  1 +  ⇒ 0 = (1 + )(1) − (1 + ) (1 + )2 = 1 +  −  −  (1 + )2 = 1 −  (1 + )2 . At 0 1 2, 0 = 1 (1 + 1)2 = 1 4 , and an equation of the tangent line is  − 1 2 = 1 4( − 0) or  = 1 4 + 1 2. 33.  = 2 ⇒ 0 = 2( ·  +  · 1) = 2( + 1). At (0 0), 0 = 20(0 + 1) = 2 · 1 · 1 = 2, and an equation of the tangent line is  − 0 = 2( − 0), or  = 2. The slope of the normal line is − 1 2, so an equation of the normal line is  − 0 = − 1 2( − 0), or  = − 1 2. 34.  = 2 2 + 1 ⇒ 0 = (2 + 1)(2) (2 + 1) − 22(2) = (22−+ 1) 222 . At (1 1), 0 = 0, and an equation of the tangent line is  − 1 = 0( − 1), or  = 1. The slope of the normal line is undefined, so an equation of the normal line is  = 1. 35. (a)  = () = 1 1 + 2 ⇒  0() = (1 + 2)(0) − 1(2) (1 + 2)2 = −2 (1 + 2)2 . So the slope of the tangent line at the point −1 1 2 is  0(−1) = 222 = 1 2 and its equation is  − 1 2 = 1 2( + 1) or  = 1 2 + 1. (b) 36. (a)  = () =  1 + 2 ⇒  0() = (1 + 2)1 − (2) (1 + 2)2 = 1 − 2 (1 + 2)2 . So the slope of the tangent line at the point (3 03) is  0(3) = 100 −8 and its equation is  − 03 = −008( − 3) or  = −008 + 054. (b) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.2 THE PRODUCT AND QUOTIENT RULES ¤ 185 37. (a) () = (3 − ) ⇒  0() = (3 − ) + (32 − 1) = (3 + 32 −  − 1) (b)  0 = 0 when  has a horizontal tangent line,  0 is negative when  is decreasing, and  0 is positive when  is increasing. 38. (a) () =  22 +  + 1 ⇒  0() = (22 +  + 1) − (4 + 1) (22 +  + 1)2 = (22 +  + 1 − 4 − 1) (22 +  + 1)2 = (22 − 3) (22 +  + 1)2 (b)  0 = 0 when  has a horizontal tangent line,  0 is negative when  is decreasing, and  0 is positive when  is increasing. 39. (a) () = 2 − 1 2 + 1 ⇒  0() = (2 + 1)(2) − (2 − 1)(2) (2 + 1)2 = (2)[(2 + 1) − (2 − 1)] (2 + 1)2 = (2)(2) (2 + 1)2 = 4 (2 + 1)2 ⇒  00() = (2 + 1)2(4) − 4(4 + 22 + 1)0 [(2 + 1)2]2 = 4(2 + 1)2 − 4(43 + 4) (2 + 1)4 = 4(2 + 1)2 − 162(2 + 1) (2 + 1)4 = 4(2 + 1)[(2 + 1) − 42] (2 + 1)4 = 4(1 − 32) (2 + 1)3 (b)  0 = 0 when  has a horizontal tangent and  00 = 0 when  0 has a horizontal tangent.  0 is negative when  is decreasing and positive when  is increasing.  00 is negative when  0 is decreasing and positive when  0 is increasing.  00 is negative when  is concave down and positive when  is concave up. 40. (a) () = (2 − 1) ⇒  0() = (2 − 1) + (2) = (2 + 2 − 1) ⇒  00() = (2 + 2) + (2 + 2 − 1) = (2 + 4 + 1) (b) We can see that our answers are plausible, since  has horizontal tangents where  0() = 0, and  0 has horizontal tangents where  00() = 0. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.186 ¤ CHAPTER 3 DIFFERENTIATION RULES 41. () = 2 1 +  ⇒  0() = (1 + )(2) − 2(1) (1 + )2 = 2 + 22 − 2 (1 + )2 = 2 + 2 2 + 2 + 1 ⇒  00() = (2 + 2 + 1)(2 + 2) − (2 + 2)(2 + 2) (2 + 2 + 1)2 = (2 + 2)(2 + 2 + 1 − 2 − 2) [( + 1)2]2 = 2( + 1)(1) ( + 1)4 = 2 ( + 1)3 , so  00(1) = 2 (1 + 1)3 = 2 8 = 1 4 . 42. () =   ⇒ 0() =  · 1 −  ·  ()2 = (1 − ) ()2 = 1 −   ⇒ 00() =  · (−1) − (1 − ) ()2 = [−1 − (1 − )] ()2 =  − 2  ⇒ 000() =  · 1 − ( − 2) ()2 = [1 − ( − 2)] ()2 = 3 −   ⇒ (4)() =  · (−1) − (3 − ) ()2 = [−1 − (3 − )] ()2 =  − 4  . The pattern suggests that ()() = ( − )(−1)  . (We could use mathematical induction to prove this formula.) 43. We are given that (5) = 1,  0(5) = 6, (5) = −3, and 0(5) = 2. (a) ()0(5) = (5)0(5) + (5) 0(5) = (1)(2) + (−3)(6) = 2 − 18 = −16 (b)  0 (5) = (5) 0(5) [(5)] − 2(5)0(5) = (−3)(6) (−3) −2(1)(2) = −20 9 (c)  0 (5) = (5)0(5) [(5)] − 2(5) 0(5) = (1)(2)(1) − (2−3)(6) = 20 44. We are given that (4) = 2, (4) = 5,  0(4) = 6, and 0(4) = −3. (a) () = 3() + 8() ⇒ 0() = 3 0() + 80(), so 0(4) = 3 0(4) + 80(4) = 3(6) + 8(−3) = 18 − 24 = −6. (b) () = () () ⇒ 0() = () 0() + ()  0(), so 0(4) = (4) 0(4) + (4)  0(4) = 2(−3) + 5(6) = −6 + 30 = 24. (c) () = () () ⇒ 0() = ()  0([)(−)] 2() 0(), so 0(4) = (4)  0(4) − (4) 0(4) [(4)]2 = 5(6) − 2(−3) 52 = 30 + 6 25 = 36 25 . (d) () = () () + () ⇒ 0(4) = [(4) + (4)] 0(4) − (4) [ 0(4) + 0(4)] [(4) + (4)]2 = (2 + 5) (−3) − 5 [6 + (−3)] (2 + 5)2 = −21 − 15 72 = − 36 49 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.2 THE PRODUCT AND QUOTIENT RULES ¤ 187 45. () = () ⇒  0() = 0() + () = [0() + ()].  0(0) = 0[0(0) + (0)] = 1(5 + 2) = 7 46.   () = 0() −2() · 1 ⇒   ()=2 = 20(2)2−2 (2) = 2(−3)4− (4) = −410 = −25 47. () = () ⇒ 0() =  0() + () · 1. Now (3) = 3(3) = 3 · 4 = 12 and 0(3) = 3 0(3) + (3) = 3(−2) + 4 = −2. Thus, an equation of the tangent line to the graph of  at the point where  = 3 is  − 12 = −2( − 3), or  = −2 + 18. 48.  0() = 2() ⇒  00() = 2 0() + () · 2. Now  0(2) = 22(2) = 4(10) = 40, so  00(2) = 22(40) + 10(4) = 200. 49. (a) From the graphs of  and , we obtain the following values: (1) = 2 since the point (1 2) is on the graph of ; (1) = 1 since the point (1 1) is on the graph of ;  0(1) = 2 since the slope of the line segment between (0 0) and (2 4) is 4 − 0 2 − 0 = 2; 0(1) = −1 since the slope of the line segment between (−2 4) and (2 0) is 0 − 4 2 − (−2) = −1. Now () = ()(), so 0(1) = (1)0(1) + (1)  0(1) = 2 · (−1) + 1 · 2 = 0. (b) () = ()(), so 0(5) = (5) 0(5) − (5)0(5) [(5)]2 = 2− 1 3 − 3 · 2 3 22 = − 83 4 = − 2 3 50. (a)  () = () (), so  0(2) =  (2) 0(2) + (2)  0(2) = 3 · 2 4 + 2 · 0 = 3 2 (b) () = ()(), so 0(7) = (7)  0(7) −  (7) 0(7) [(7)]2 = 1 · 1 4 − 5 · − 2 3 12 = 1 4 + 10 3 = 43 12 51. (a)  = () ⇒ 0 = 0() + () · 1 = 0() + () (b)  =  () ⇒ 0 = () · [1(−)] 2 0() = ()[−( )]20() (c)  = ()  ⇒ 0 = 0() − () · 1 ()2 = 0() − () 2 52. (a)  = 2() ⇒ 0 = 2 0() + ()(2) (b)  = () 2 ⇒ 0 = 2 0()(−2)2()(2) =  0()−3 2() (c)  = 2 () ⇒ 0 = ()(2[)(−)]22 0() (d)  = 1 +√ () ⇒ 0 = √ [ 0() + ()] − [1 + ()] 1 2 √ (√ )2 = 32 0() + 12() − 1 2−12 − 1 212()  · 212 212 = () + 22 0() − 1 232 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.188 ¤ CHAPTER 3 DIFFERENTIATION RULES 53. If  = () =   + 1 , then  0() = ( + 1)(1) − (1) ( + 1)2 = 1 ( + 1)2 . When  = , the equation of the tangent line is  −   + 1 = 1 ( + 1)2 ( − ). This line passes through (1 2) when 2 −  + 1  = ( + 1) 1 2 (1 − ) ⇔ 2( + 1)2 − ( + 1) = 1 −  ⇔ 22 + 4 + 2 − 2 −  − 1 +  = 0 ⇔ 2 + 4 + 1 = 0. The quadratic formula gives the roots of this equation as  = −4 ± 42 − 4(1)(1) 2(1) = −4 ± √12 2 = −2 ± √3, so there are two such tangent lines. Since −2 ± √3  = −2 ± √3 −2 ± √3 + 1 = −2 ± √3 −1 ± √3 · −1 ∓ √3 −1 ∓ √3 = 2 ± 2 √3 ∓ √3 − 3 1 − 3 = −1 ± √3 −2 = 1 ∓ √3 2 , the lines touch the curve at −2 + √3 1 −2√3 ≈ (−027 −037) and −2 − √3 1 +2√3 ≈ (−373 137). 54.  =  − 1  + 1 ⇒ 0 = ( + 1)(1) − ( − 1)(1) ( + 1)2 = 2 ( + 1)2 . If the tangent intersects the curve when  = , then its slope is 2( + 1)2. But if the tangent is parallel to  − 2 = 2, that is,  = 1 2 − 1, then its slope is 1 2. Thus, 2 ( + 1)2 = 1 2 ⇒ ( + 1)2 = 4 ⇒  + 1 = ±2 ⇒  = 1 or −3. When  = 1,  = 0 and the equation of the tangent is  − 0 = 1 2( − 1) or  = 1 2 − 1 2. When  = −3,  = 2 and the equation of the tangent is  − 2 = 1 2( + 3) or  = 1 2 + 7 2. 55.  =   ⇒ 0 =  0 − 0 2 . For () =  − 33 + 55,  0() = 1 − 92 + 254, and for () = 1 + 33 + 66 + 99, 0() = 92 + 365 + 818. Thus, 0(0) = (0) 0(0) − (0)0(0) [(0)]2 = 1 · 1 − 0 · 0 12 = 1 1 = 1. 56.  =   ⇒ 0 =  0 − 0 2 . For () = 1 +  + 2 + ,  0() = 1 + 2 +  + , and for () = 1 −  + 2 − , 0() = −1 + 2 −  − . Thus, 0(0) = (0) 0(0) − (0)0(0) [(0)]2 = 1 · 2 − 1 · (−2) 12 = 4 1 = 4. 57. If () denotes the population at time  and () the average annual income, then () = ()() is the total personal income. The rate at which () is rising is given by  0() = ()0() + () 0() ⇒  0(1999) = (1999)0(1999) + (1999) 0(1999) = (961,400)($1400yr) + ($30,593)(9200yr) = $1,345,960,000yr + $281,455,600yr = $1,627,415,600yr So the total personal income was rising by about $1.627 billion per year in 1999. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.2 THE PRODUCT AND QUOTIENT RULES ¤ 189 The term ()0() ≈ $1.346 billion represents the portion of the rate of change of total income due to the existing population’s increasing income. The term () 0() ≈ $281 million represents the portion of the rate of change of total income due to increasing population. 58. (a) (20) = 10,000 means that when the price of the fabric is $20yard, 10,000 yards will be sold.  0(20) = −350 means that as the price of the fabric increases past $20yard, the amount of fabric which will be sold is decreasing at a rate of 350 yards per (dollar per yard). (b) () = () ⇒ 0() =  0() + () · 1 ⇒ 0(20) = 20 0(20) + (20) · 1 = 20(−350) + 10,000 = 3000. This means that as the price of the fabric increases past $20yard, the total revenue is increasing at $3000($yard). Note that the Product Rule indicates that we will lose $7000($yard) due to selling less fabric, but this loss is more than made up for by the additional revenue due to the increase in price. 59.  = 014[S] 0015 + [S] ⇒  [S] = (0015 + [S])(014) − (014[S])(1) (0015 + [S])2 = 00021 (0015 + [S])2 . [S] represents the rate of change of the rate of an enzymatic reaction with respect to the concentration of a substrate S. 60. () = () () ⇒ 0() = ()  0() + ()  0(), so 0(4) = (4)  0(4) + (4)  0(4) = 820(014) + 12(50) = 1748 gweek. 61. (a) ()0 = [()]0 = ()0 + ()0 = ( 0 + 0) + ()0 =  0 + 0 + 0 (b) Putting  =  =  in part (a), we have  [()]3 = ()0 =  0 +  0 +  0 = 3 0 = 3[()]2 0(). (c)   (3) =   ()3 = 3()2 = 32 = 33 62. (a) We use the Product Rule repeatedly:  =  ⇒  0 =  0 + 0 ⇒  00 = ( 00 +  00) + ( 00 + 00) =  00 + 2 00 + 00. (b)  000 =  000 +  000 + 2 ( 000 +  000) +  000 + 000 =  000 + 3 000 + 3 000 + 000 ⇒  (4) =  (4) +  0000 + 3 ( 0000 +  0000) + 3 ( 0000 +  0000) +  0000 + (4) =  (4) + 4 0000 + 6 0000 + 4 0000 + (4) (c) By analogy with the Binomial Theorem, we make the guess:  () =  () +  (−1)0 + 2 (−2)00 + · · · +  (−)() + · · · +  0(−1) + (), where  = ! (−! )! = ( − 1)( − 2) !· · · ( −  + 1). °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.190 ¤ CHAPTER 3 DIFFERENTIATION RULES 63. For () = 2,  0() = 2 + (2) = (2 + 2). Similarly, we have  00() = (2 + 4 + 2)  000() = (2 + 6 + 6)  (4)() = (2 + 8 + 12)  (5)() = (2 + 10 + 20) It appears that the coefficient of  in the quadratic term increases by 2 with each differentiation. The pattern for the constant terms seems to be 0 = 1 · 0, 2 = 2 · 1, 6 = 3 · 2, 12 = 4 · 3, 20 = 5 · 4. So a reasonable guess is that  ()() = [2 + 2 + ( − 1)]. Proof: Let  be the statement that  ()() = [2 + 2 + ( − 1)]. 1. 1 is true because  0() = (2 + 2). 2. Assume that  is true; that is,  ()() = [2 + 2 + ( − 1)]. Then  (+1)() =    ()() = (2 + 2) + [2 + 2 + ( − 1)] = [2 + (2 + 2) + (2 + )] = [2 + 2( + 1) + ( + 1)] This shows that +1 is true. 3. Therefore, by mathematical induction,  is true for all ; that is,  ()() = [2 + 2 + ( − 1)] for every positive integer . 64. (a)   (1) = () ·   (1) [(−)]12·   [()] [Quotient Rule] = () ·[0(−)] 12· 0() = 0[−(0)] (2 ) = −[(0()] )2 (b)   3 + 212 − 1 = −(33 + 2 + 222 −−1) 120 = −(3 + 2 32 + 4 2 −1)2 (c)   (−) =   1  = −(())20 [by the Reciprocal Rule] = −2−1 = −−1−2 = −−−1 3.3 Derivatives of Trigonometric Functions 1. () = 2 sin  ⇒PR  0() = 2 cos  + (sin )(2) = 2 cos  + 2 sin  2. () =  cos  + 2 tan  ⇒  0() = (− sin ) + (cos )(1) + 2 sec2  = cos  −  sin  + 2 sec2  3. () =  cos  ⇒  0() = (− sin ) + (cos ) = (cos  − sin ) 4.  = 2 sec  − csc  ⇒ 0 = 2(sec  tan ) − (− csc  cot ) = 2 sec  tan  + csc  cot  5.  = sec  tan  ⇒ 0 = sec  (sec2 ) + tan  (sec  tan ) = sec  (sec2  + tan2 ). Using the identity 1 + tan2  = sec2 , we can write alternative forms of the answer as sec  (1 + 2 tan2 ) or sec  (2 sec2  − 1). 6. () = (tan  − ) ⇒ 0() = (sec2  − 1) + (tan  − ) = (sec2  − 1 + tan  − ) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS ¤ 191 7.  =  cos  + 2 sin  ⇒ 0 = (− sin ) + 2(cos ) + sin  (2) = − sin  + ( cos  + 2 sin ) 8. () = cot   ⇒  0() = (− csc2())−2 (cot ) = (− csc (2)2− cot ) = −csc2 + cot   9.  =  2 − tan  ⇒ 0 = (2 − tan )(1) − (− sec2 ) (2 − tan )2 = 2 − tan  +  sec2  (2 − tan )2 10.  = sin  cos  ⇒ 0 = sin (− sin ) + cos (cos ) = cos2  − sin2  [or cos 2] 11. () = sin  1 + cos  ⇒  0() = (1 + cos ) cos  − (sin )(− sin ) (1 + cos )2 = cos  + cos2  + sin2  (1 + cos )2 = cos  + 1 (1 + cos )2 = 1 1 + cos  12.  = cos  1 − sin ⇒ 0 = (1 − sin )(− sin ) − cos (− cos ) (1 − sin )2 = − sin  + sin2  + cos2  (1 − sin )2 = − sin  + 1 (1 − sin )2 = 1 1 − sin  13.  =  sin  1 +  ⇒ 0 = (1 + )( cos  + sin ) −  sin(1) (1 + )2 =  cos  + sin + 2 cos  +  sin  −  sin  (1 + )2 = (2 + ) cos  + sin  (1 + )2 14.  = sin  1 + tan  ⇒ 0 = (1 + tan ) cos  − (sin ) sec2  (1 + tan )2 = cos  + sin  − sin  cos2  (1 + tan )2 = cos  + sin  − tan  sec  (1 + tan )2 15. Using Exercise 3.2.61(a) , () =  cos  sin  ⇒  0() = 1 cos  sin  + (− sin ) sin  +  cos (cos ) = cos  sin −  sin2  +  cos2  = sin  cos  + (cos2  − sin2 ) = 1 2 sin 2 +  cos 2 [using double-angle formulas] 16. Using Exercise 3.2.61(a), () =  cot  ⇒  0() = 1 cot  +  cot  + (− csc2 ) = (cot  +  cot  −  csc2 ) 17.   (csc ) =   sin1  = (sin )(0) sin−2 1(cos ) = −sin cos 2  = −sin1  · cos sin  = − csc  cot  18.   (sec ) =   cos 1  = (cos )(0) cos −21(  − sin ) = cos sin2 = cos 1  · cos sin  = sec  tan  19.   (cot ) =   cos sin  = (sin )(− sin sin ) −2 (cos )(cos ) = −sin2 sin+ cos 2  2  = −sin12  = − csc2  °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.192 ¤ CHAPTER 3 DIFFERENTIATION RULES 20. () = cos  ⇒  0() = lim →0 ( + ) − ()  = lim →0 cos ( + ) − cos  = lim →0 cos  cos  − sin   sin  − cos  = lim →0 cos  cos − 1 − sin  sin = cos  lim →0 cos − 1 − sin  lim →0 sin = (cos )(0) − (sin )(1) = − sin  21.  = sin  + cos  ⇒ 0 = cos  − sin , so 0(0) = cos 0 − sin 0 = 1 − 0 = 1. An equation of the tangent line to the curve  = sin  + cos  at the point (0 1) is  − 1 = 1( − 0) or  =  + 1. 22.  =  cos  ⇒ 0 = (− sin ) + (cos ) = (cos  − sin ) ⇒ the slope of the tangent line at (0 1) is 0(cos 0 − sin 0) = 1(1 − 0) = 1 and an equation is  − 1 = 1( − 0) or  =  + 1. 23.  = cos  − sin  ⇒ 0 = − sin  − cos , so 0() = − sin  − cos  = 0 − (−1) = 1. An equation of the tangent line to the curve  = cos  − sin  at the point ( −1) is  − (−1) = 1( − ) or  =  −  − 1. 24.  =  + tan  ⇒ 0 = 1 + sec2 , so 0() = 1 + (−1)2 = 2. An equation of the tangent line to the curve  =  + tan  at the point ( ) is  −  = 2( − ) or  = 2 − . 25. (a)  = 2 sin  ⇒ 0 = 2( cos  + sin  · 1). At  2  , 0 = 2 2 cos 2 + sin 2  = 2(0 + 1) = 2, and an equation of the tangent line is  −  = 2 − 2 , or  = 2. (b) 26. (a)  = 3 + 6 cos  ⇒ 0 = 3 − 6 sin . At  3   + 3, 0 = 3 − 6 sin 3 = 3 − 6 √23 = 3 − 3 √3, and an equation of the tangent line is  − ( + 3) = 3 − 3 √3  − 3 , or  = 3 − 3 √3   + 3 +  √3. (b) 27. (a) () = sec  −  ⇒  0() = sec  tan  − 1 (b) Note that  0 = 0 where  has a minimum. Also note that  0 is negative when  is decreasing and  0 is positive when  is increasing. 28. (a) () =  cos  ⇒  0() = (− sin ) + (cos )  = (cos  − sin ) ⇒  00() = (− sin  − cos ) + (cos  − sin )  = (− sin  − cos  + cos  − sin ) = −2 sin  °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS ¤ 193 (b) Note that  0 = 0 where  has a minimum and  00 = 0 where  0 has a minimum. Also note that  0 is negative when  is decreasing and  00 is negative when  0 is decreasing. 29. () =  sin ⇒ 0() =  (cos ) + (sin ) · 1 =  cos  + sin  ⇒ 00() =  (− sin ) + (cos ) · 1 + cos  = − sin  + 2 cos  30. () = sec  ⇒  0() = sec  tan  ⇒  00() = (sec ) sec2  + (tan ) sec  tan  = sec3  + sec  tan2 , so  00 4  = √2 3 + √2(1)2 = 2√2 + √2 = 3√2. 31. (a) () = tan − 1 sec  ⇒  0() = sec (sec2 ) − (tan  − 1)(sec  tan ) (sec )2 = sec (sec2  − tan2  + tan ) sec 2  = 1 + tan  sec  (b) () = tan  − 1 sec  = sin  cos  − 1 1 cos  = sin  − cos  cos  1 cos  = sin  − cos  ⇒  0() = cos  − (− sin ) = cos  + sin  (c) From part (a),  0() = 1 + tan sec  = 1 sec  + tan  sec  = cos  + sin , which is the expression for  0() in part (b). 32. (a) () = () sin  ⇒ 0() = () cos  + sin  ·  0(), so 0( 3 ) = ( 3 ) cos 3 + sin 3 ·  0( 3 ) = 4 · 1 2 + √23 · (−2) = 2 − √3 (b) () = cos  () ⇒ 0() = () · (− sin[()−)]2cos  ·  0(), so 0( 3 ) = ( 3 ) · (− sin3)3−cos 2 3 ·  0( 3 ) = 4− √234−2  1 2(−2) = −2 √163 + 1 = 1 −16 2 √3 33. () =  + 2 sin  has a horizontal tangent when  0() = 0 ⇔ 1 + 2 cos  = 0 ⇔ cos  = − 1 2 ⇔  = 2 3 + 2 or 43 + 2, where  is an integer. Note that 43 and 23 are ± 3 units from . This allows us to write the solutions in the more compact equivalent form (2 + 1) ± 3 ,  an integer. 34. () =  cos  has a horizontal tangent when  0() = 0.  0() = (− sin ) + (cos ) = (cos  − sin ).  0() = 0 ⇔ cos  − sin  = 0 ⇔ cos  = sin  ⇔ tan  = 1 ⇔  = 4 + ,  an integer. 35. (a) () = 8 sin  ⇒ () = 0() = 8 cos  ⇒ () = 00() = −8 sin  (b) The mass at time  = 23 has position  23  = 8 sin 23 = 8 √23 = 4√3, velocity  23  = 8 cos 23 = 8− 1 2 = −4, and acceleration  23  = −8 sin 23 = −8 √23 = −4 √3. Since  23   0, the particle is moving to the left. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.194 ¤ CHAPTER 3 DIFFERENTIATION RULES 36. (a) () = 2 cos  + 3 sin  ⇒ () = −2 sin  + 3 cos  ⇒ () = −2 cos  − 3 sin  (b) (c)  = 0 ⇒ 2 ≈ 255. So the mass passes through the equilibrium position for the first time when  ≈ 255 s. (d)  = 0 ⇒ 1 ≈ 098, (1) ≈ 361 cm. So the mass travels a maximum of about 36 cm (upward and downward) from its equilibrium position. (e) The speed || is greatest when  = 0, that is, when  = 2 + ,  a positive integer. 37. From the diagram we can see that sin  = 10 ⇔  = 10 sin . We want to find the rate of change of  with respect to , that is, . Taking the derivative of  = 10 sin , we get  = 10(cos ). So when  = 3 ,   = 10 cos 3 = 10 1 2 = 5 ftrad. 38. (a)  =   sin  + cos  ⇒   = ( sin  + cos )(0) −  ( cos  − sin ) ( sin  + cos )2 = (sin  −  cos ) ( sin  + cos )2 (b)   = 0 ⇔ (sin  −  cos ) = 0 ⇔ sin  =  cos  ⇔ tan  =  ⇔  = tan−1  (c) From the graph of  = 06(50) 06 sin  + cos  for 0 ≤  ≤ 1, we see that   = 0 ⇒  ≈ 054. Checking this with part (b) and  = 06, we calculate  = tan−1 06 ≈ 054. So the value from the graph is consistent with the value in part (b). 39. lim →0 sin 5 3 = lim →0 5 3 sin 5 5   = 53 lim →0 sin 5 5  = 53 lim →0 sin  [ = 5] = 53 · 1 = 53 40. lim →0 sin  sin  = lim →0 sin   ·  sin  · 1  = lim →0 sin   · lim →0  sin  · 1  [ = ] = 1 · lim →0 1 sin   · 1  = 1 · 1 · 1  = 1  41. lim →0 tan 6 sin 2 = lim →0 sin 6   · cos 6 1  · sin 2    = lim →0 6 sin 6 6  · lim →0 cos 6 1  · lim →0 2 sin 2 2  = 6 lim →0 sin 6 6 · lim →0 1 cos 6 · 1 2 lim →0 2 sin 2 = 6(1) · 1 1 · 1 2 (1) = 3 42. lim →0 cos  − 1 sin  = lim →0 cos  − 1  sin   = lim →0 cos  − 1  lim →0 sin   = 0 1 = 0 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.3 DERIVATIVES OF TRIGONOMETRIC FUNCTIONS ¤ 195 43. lim →0 sin 3 53 − 4 = lim →0 sin 3 3 · 523− 4 = lim →0 sin 3 3 · lim →0 523− 4 = 1 · −34 = −3 4 44. lim →0 sin 3 sin 5 2 = lim →0 3 sin 3 3  · 5 sin 5 5  = lim →0 3 sin 3 3  · lim →0 5 sin 5 5  = 3 lim →0 sin 3 3 · 5 lim →0 sin 5 5 = 3(1) · 5(1) = 15 45. Divide numerator and denominator by . (sin  also works.) lim →0 sin   + tan  = lim →0 sin   1 + sin   · 1 cos  = lim →0 sin   1 + lim →0 sin   lim →0 cos 1  = 1 1 + 1 · 1 = 1 2 46. lim →0 csc  sin(sin ) = lim →0 sin(sin ) sin  = lim →0 sin   [As  → 0,  = sin  → 0.] = 1 47. lim →0 cos  − 1 22 = lim →0 cos22− 1 · cos cos  + 1 + 1 = lim →0 2cos 2(cos 2 −+ 1) 1 = lim →0 22−(cos sin2 + 1)  = − 1 2 lim →0 sin   · sin   · 1 cos  + 1 = − 1 2 lim →0 sin   · lim →0 sin  · lim →0 cos 1+ 1 = − 1 2 · 1 · 1 · 1 1 + 1 = − 1 4 48. lim →0 sin(2)  = lim →0  · sin(  ·2) = lim →0  · lim →0 sin( 22) = 0 · lim →0+ sin  where  = 2 = 0 · 1 = 0 49. lim →4 1 − tan  sin  − cos  = lim →4 1 − cos sin  · cos  (sin  − cos ) · cos  = lim →4 (sincos  −cos − sin ) cos   = lim →4 cos −1 = 1−√12 = −√2 50. lim →1 sin( − 1) 2 +  − 2 = lim →1 (sin( + 2)(  − −1)1) = lim →1  + 2 1 lim →1 sin( −−11) = 1 3 · 1 = 1 3 51.   (sin ) = cos  ⇒  22 (sin ) = − sin  ⇒  33 (sin ) = − cos  ⇒  44 (sin ) = sin . The derivatives of sin  occur in a cycle of four. Since 99 = 4(24) + 3, we have 99 99 (sin ) =  33 (sin ) = − cos . 52. Let () =  sin  and () = sin , so () = (). Then  0() = () + 0(),  00() = 0() + 0() + 00() = 20() + 00(),  000() = 200() + 00() + 000() = 300() + 000() · · ·   ()() = (−1)() + ()(). Since 34 = 4(8) + 2, we have (34)() = (2)() = 2 2 (sin ) = − sin  and (35)() = − cos . Thus, 35 35 ( sin ) = 35(34)() + (35)() = −35 sin  −  cos . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.196 ¤ CHAPTER 3 DIFFERENTIATION RULES 53.  =  sin  +  cos  ⇒ 0 =  cos  −  sin  ⇒ 00 = − sin  −  cos . Substituting these expressions for , 0, and 00 into the given differential equation 00 + 0 − 2 = sin  gives us (− sin  −  cos ) + (cos  −  sin ) − 2( sin  +  cos ) = sin  ⇔ −3 sin  −  sin +  cos  − 3 cos  = sin  ⇔ (−3 − ) sin  + ( − 3) cos  = 1 sin , so we must have −3 −  = 1 and  − 3 = 0 (since 0 is the coefficient of cos  on the right side). Solving for  and , we add the first equation to three times the second to get  = − 10 1 and  = − 10 3 . 54. (a) Let  = 1  . Then as  → ∞,  → 0+, and lim →∞  sin 1  = lim →0+ 1  sin  = lim →0 sin   = 1. (b) Since −1 ≤ sin (1) ≤ 1, we have (as illustrated in the figure) − || ≤  sin (1) ≤ ||. We know that lim →0 (||) = 0 and lim →0 (− ||) = 0; so by the Squeeze Theorem, lim →0  sin (1) = 0. (c) 55. (a)   tan  =   sin  cos  ⇒ sec2  = cos  cos  − sin  (− sin ) cos2  = cos2  + sin2  cos2  . So sec2  = cos12 . (b)   sec  =   1 cos  ⇒ sec  tan = (cos )(0) − 1(− sin ) cos2  . So sec  tan  = cos sin2 . (c)   (sin  + cos ) =   1 + cot csc   ⇒ cos  − sin  = csc  (− csc2 ) − (1 + cot )(− csc  cot ) csc2  = csc  [− csc2  + (1 + cot ) cot ] csc2  = − csc2  + cot2  + cot  csc  = −1 + cot  csc  So cos  − sin  = cot  − 1 csc  . 56. We get the following formulas for  and  in terms of : sin  2 =  10 ⇒  = 10 sin  2 and cos  2 =  10 ⇒  = 10 cos  2 Now () = 1 22 and () = 1 2(2) = . So lim →0+ () () = lim →0+ 12 2  = 12  lim →0+   = 12  lim →0+ 10 sin(2) 10 cos(2) = 12  lim →0+ tan(2) = 0 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.4 THE CHAIN RULE ¤ 197 57. By the definition of radian measure,  = , where  is the radius of the circle. By drawing the bisector of the angle , we can see that sin  2 = 2  ⇒  = 2 sin  2 . So lim →0+   = lim →0+  2 sin(2) = lim →0+ 2 sin( 2 · ( 2) 2) = lim →0 sin(  22) = 1. [This is just the reciprocal of the limit lim →0 sin   = 1 combined with the fact that as  → 0, 2 → 0 also] 58. (a) It appears that () = √1 −cos 2 has a jump discontinuity at  = 0. (b) Using the identity cos 2 = 1 − sin2, we have √1 −cos 2 = 1 − (1 − 2 sin2 ) = √2 sin  2 = √2 |sin |. Thus, lim →0−  √1 − cos 2 = lim →0− √2 |sin | = √12 lim →0− −(sin  ) = − 1 √ 2 lim →0− 1 sin  = − 1 √ 2 · 1 1 = − √2 2 Evaluating lim →0+ () is similar, but | sin| = + sin , so we get 1 2√2. These values appear to be reasonable values for the graph, so they confirm our answer to part (a). Another method: Multiply numerator and denominator by √1 + cos 2. 3.4 The Chain Rule 1. Let  = () = 1 + 4 and  = () = √3 . Then   =     = ( 1 3−23)(4) = 33 (1 + 4 4 )2 . 2. Let  = () = 23 + 5 and  = () = 4. Then   =     = (43)(62) = 242(23 + 5)3. 3. Let  = () =  and  = () = tan . Then   =     = (sec2 )() =  sec2 . 4. Let  = () = cot  and  = () = sin . Then   =     = (cos )(− csc2 ) = − cos(cot ) csc2 . 5. Let  = () = √ and  = () = . Then   =     = () 1 2−12 = √ · 2 √1  = 2√√. 6. Let  = () = 2 −  and  = () = √. Then   =     = ( 1 2−12)(−) = −2√2−  . 7. () = (56 + 23)4 ⇒  0() = 4(56 + 23)3 ·  (56 + 23) = 4(56 + 23)3(305 + 62). We can factor as follows: 4(3)3(53 + 2)362(53 + 1) = 2411(53 + 2)3(53 + 1) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.198 ¤ CHAPTER 3 DIFFERENTIATION RULES 8. () = (1 +  + 2)99 ⇒  0() = 99(1 +  + 2)98 ·   1 +  + 2 = 99(1 +  + 2)98(1 + 2) 9. () = √5 + 1 = (5 + 1)12 ⇒  0() = 1 2(5 + 1)−12(5) = 5 2√5 + 1 10. () = √3 21− 1 = (2 − 1)−13 ⇒  0() = −13(2 − 1)−43(2) = 3(2−−21)43 11. () = cos(2) ⇒  0() = − sin(2) ·   (2) = − sin(2) · (2) = −2 sin(2) 12. () = cos2  = (cos )2 ⇒ 0() = 2 (cos )1 (− sin ) = −2 sin  cos  = − sin 2 13.  = 2−3 ⇒ 0 = 2−3(−3) + −3(2) = −3(−32 + 2) = −3(2 − 3) 14. () =  sin  ⇒  0() = (cos ) ·  + (sin ) · 1 =  cos  + sin  15. () =  sin  ⇒  0() = (cos ) ·  + (sin ) ·  = ( cos  +  sin ) 16. () = 2− ⇒ 0() = 2−(2 − 1) 17. () = (2 − 3)4(2 +  + 1)5 ⇒  0() = (2 − 3)4 · 5(2 +  + 1)4(2 + 1) + (2 +  + 1)5 · 4(2 − 3)3 · 2 = (2 − 3)3(2 +  + 1)4[(2 − 3) · 5(2 + 1) + (2 +  + 1) · 8] = (2 − 3)3(2 +  + 1)4(202 − 20 − 15 + 82 + 8 + 8) = (2 − 3)3(2 +  + 1)4(282 − 12 − 7) 18. () = (2 + 1)3(2 + 2)6 ⇒ 0() = (2 + 1)3 · 6(2 + 2)5 · 2 + (2 + 2)6 · 3(2 + 1)2 · 2 = 6(2 + 1)2(2 + 2)5[2(2 + 1) + (2 + 2)] = 6(2 + 1)2(2 + 2)5(32 + 4) 19. () = ( + 1)23(22 − 1)3 ⇒ 0() = ( + 1)23 · 3(22 − 1)2 · 4 + (22 − 1)3 · 2 3( + 1)−13 = 2 3( + 1)−13(22 − 1)2[18( + 1) + (22 − 1)] = 23 ( + 1)−13(22 − 1)2(202 + 18 − 1) 20. () = (3 − 1)4(2 + 1)−3 ⇒  0() = (3 − 1)4(−3)(2 + 1)−4(2) + (2 + 1)−3 · 4(3 − 1)3(3) = 6(3 − 1)3(2 + 1)−4[−(3 − 1) + 2(2 + 1)] = 6(3 − 1)3(2 + 1)−4( + 3) 21.  =  + 1  =  + 1  12 ⇒ 0 = 1 2  + 1  −12    + 1   = 12 ( + 1) −1−212 ( + 1)(1) ( + 1) −2 (1) = 1 2 ( + 1)12 12 1 ( + 1)2 = 1 2√( + 1)32 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.4 THE CHAIN RULE ¤ 199 22.  =  + 1 5 ⇒ 0 = 5 + 1 4    + 1  = 5 + 1 4 1 − 12 . Another form of the answer is 5(2 + 1)4(2 − 1) 6 . 23.  = tan  ⇒ 0 = tan   (tan ) = (sec2 )tan  24. Using Formula 5 and the Chain Rule, () = 23 ⇒  0() = 23 ln 2   (3) = 3(ln 2)223. 25. () = 3 3 − + 1 18 ⇒ 0() = 8 3 3 − + 1 17    3 3 − + 1 1 = 8 (3 3 − + 1) 177 (3 + 1)(3(23) −+ 1) (23 − 1)(32) = 8 (3 − 1)7 (3 + 1)7 32[(3 + 1) − (3 − 1)] (3 + 1)2 = 8((3 3 − + 1) 1)7 7 (33+ 1) 2(2) 2 = 48(23(+ 1) 3 −91)7 26. () = 1 + cos 1 + sin  = 1 + cos 1 + sin 12 ⇒ 0() = 1 21 + cos 1 + sin −12 (1 + cos ) cos (1 + cos  − (1 + sin )2 )(− sin ) = 1 2 (1 + sin )−12 (1 + cos )−12 cos  + cos2  + sin  + sin2  (1 + cos )2 = cos  + sin  + 1 2√1 + sin  (1 + cos )32 27. Using Formula 5 and the Chain Rule, () = 102√ ⇒ 0() = 102√ ln 10   2√  = 102√ ln 10 2 · 1 2−12 = (ln 10) 10 √ 2√ 28. () = (−1) ⇒  0() = (−1)     − 1 = (−1) ( − 1)(1) − (1) ( − 1)2 = − (−1) ( − 1)2 29. () = (2 − 1)3 (2 + 1)5 ⇒ 0() = (2 + 1)5 · 3(2 − 1)2(2) − (2 − 1)3 · 5(2 + 1)4(2) [(2 + 1)5]2 = 2(2 + 1)4(2 − 1)2[3(2 + 1) − 5(2 − 1)] (2 + 1)10 = 2(2 − 1)2(62 + 3 − 52 + 5) (2 + 1)6 = 2(2 − 1)2(2 + 3 + 5) (2 + 1)6 30. () = tan2() = [tan()]2 ⇒  0() = 2 [tan()]1   tan() = 2 tan() sec2() ·  = 2 tan() sec2() 31. By (9), () =  sin 2 ⇒  0() =  sin 2( sin 2)0 =  sin 2( · 2 cos 2 + sin 2 · 1) =  sin 2(2 cos 2 + sin 2) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.200 ¤ CHAPTER 3 DIFFERENTIATION RULES 32. () = √32+ 1 ⇒  0() = (3 + 1)12(2)−√32+ 1 · 1 2(32 + 1)−12(32) = (3 + 1)−1(23+ 1) 2(3 1+ 1) − 3 23 =  1 23 + 2 (3 + 1)32 = (3 + 4) 2(3 + 1)32 33. Using Formula 5 and the Chain Rule, () = 4 ⇒ 0() = 4 (ln 4)      = −1 = 4 (ln 4) −−2 = − (ln 4) 4 2 34. () = 4 2 + 1 + 15 ⇒  0() = 54 2 + 1 + 14 (2 + 1)(4(32)+ 1) − (24 + 1)(2) = 5(4 + 1)(422[2 + 1) 2(4(22+ 1) + 1) −2 (4 + 1)] = 10(4 + 1)4(4 + 22 − 1) (2 + 1)6 35.  = cos11 + − 2 2   ⇒ 0 = − sin1 1 +−  2 2   ·   1 1 +−  2 2   = − sin11 +− 2 2   · (1 + 2)(−2(1 + 2) −2(1 )2− 2)(22) = − sin1 1 +−  2 2   · −22 (1 + (1 +2) + (1 2)2 − 2) = − sin1 1 +−  2 2   · (1 + −222(2) )2 = (1 +422)2 · sin1 1 +−  2 2   36.  = 2−1 ⇒ 0 = 2−112  + −1(2) = −1 + 2−1 = −1(1 + 2) 37.  = cot2(sin ) = [cot(sin )]2 ⇒ 0 = 2[cot(sin )] ·   [cot(sin )] = 2 cot(sin ) · [− csc2(sin ) · cos ] = −2 cos  cot(sin ) csc2(sin ) 38.  = √1 + −2 ⇒ 0 = 1 21 + −2−12 −2−2 + −2 = −2(−2 + 1) 2 √1 + −2 39. () = tan(sec(cos )) ⇒  0() = sec2(sec(cos ))   sec(cos ) = sec2(sec(cos ))[sec(cos ) tan(cos )]   cos  = − sec2(sec(cos )) sec(cos ) tan(cos ) sin  40.  = sin 2 + sin(2) ⇒ 0 = sin 2   sin 2 + cos(2)  2 = sin 2(cos 2) · 2 + cos(2) 2 · 2 = 2 cos 2 sin 2 + 22 cos(2) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.4 THE CHAIN RULE ¤ 201 41. () = sin2sin2 = sinsin22 ⇒  0() = 2sinsin2 ·   sinsin2 = 2 sinsin2 · cossin2 ·   sin2 = 2 sinsin2 cossin2 · sin2 ·   sin2  = 2 sinsin2 cossin2 sin2 · 2 sin  cos  = 4 sinsin2 cossin2 sin2 sin  cos  42.  =  +  + √ ⇒ 0 = 1 2 +  + √ −121 + 1 2 + √ −121 + 1 2−12 43. () = (2 + ) ⇒ 0() = (2 + )−1 ·  (2 + ) = (2 + )−1 · 2(ln ) ·  = 22(ln )(2 + )−1 44.  = 234 ⇒ 0 = 234 (ln 2)  34 = 234 (ln 2) 34 (ln 3)   4 = 234 (ln 2) 34 (ln 3) 4(ln 4) = (ln 2)(ln 3)(ln 4)434234 45.  = cos sin(tan ) = cos(sin(tan ))12 ⇒ 0 = − sin(sin(tan ))12 ·   (sin(tan ))12 = − sin(sin(tan ))12 · 1 2(sin(tan ))−12 ·   (sin(tan )) = − sin sin(tan ) 2 sin(tan ) · cos(tan ) ·   tan  = −2sin sin(tan sin(tan  ) ) · cos(tan ) · sec2() ·  = − cos(tan ) sec2() sin sin(tan ) 2 sin(tan ) 46.  =  + ( + sin2 )34 ⇒ 0 = 4  + ( + sin2 )33 · 1 + 3( + sin2 )2 · (1 + 2 sin  cos ) 47.  = cos(sin 3) ⇒ 0 = − sin(sin 3) · (cos 3) · 3 = −3 cos 3 sin(sin 3) ⇒ 00 = −3 [(cos 3) cos(sin 3)(cos 3) · 3 + sin(sin 3)(− sin 3) · 3] = −9 cos2(3) cos(sin 3) + 9(sin 3) sin(sin 3) 48.  = 1 (1 + tan )2 = (1 + tan )−2 ⇒ 0 = −2(1 + tan )−3 sec2  = (1 + tan −2 sec2)3 . Using the Product Rule with 0 = −2(1 + tan )−3 (sec )2, we get 00 = −2(1 + tan )−3 · 2(sec )(sec  tan ) + (sec )2 · 6(1 + tan )−4 sec2  = 2 sec2  (1 + tan )−4 −2(1 + tan ) tan  + 3 sec2  2 is the lesser exponent for and −4 for (1 + tan sec )   = 2 sec2  (1 + tan )−4 −2 tan  − 2 tan2  + 3(tan2  + 1) = 2 sec2  tan2  − 2 tan  + 3 (1 + tan )4 49.  = √1 − sec  ⇒ 0 = 1 2(1 − sec )−12(− sec  tan ) = − sec  tan  2√1 − sec  . Using the Product Rule with 0 = − 1 2 sec  tan  (1 − sec )−12, we get °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.202 ¤ CHAPTER 3 DIFFERENTIATION RULES 00 = − 1 2 sec  tan − 1 2(1 − sec )−32(− sec  tan ) + (1 − sec )−12 − 1 2[sec  sec2  + tan  sec  tan ]. Now factor out − 1 2 sec (1 − sec )−32. Note that − 3 2 is the lesser exponent on (1 − sec ). Continuing, 00 = − 1 2 sec  (1 − sec )−32  1 2 sec  tan2  + (1 − sec )(sec2  + tan2 ) = − 12 sec  (1 − sec )−32  1 2 sec  tan2  + sec2  + tan2  − sec3  − sec  tan2  = − 12 sec  (1 − sec )−32 − 1 2 sec  (sec2  − 1) + sec2  + (sec2  − 1) − sec3  = − 12 sec  (1 − sec )−32 − 3 2 sec3  + 2 sec2  + 1 2 sec  − 1 = sec  (1 − sec )−32  3 4 sec3  − sec2  − 1 4 sec  + 1 2 = sec  (3 sec3  − 4 sec2  − sec  + 2) 4(1 − sec )32 There are many other correct forms of 00, such as 00 = sec  (3 sec  + 2)√1 − sec  4 . We chose to find a factored form with only secants in the final form. 50.  =  ⇒ 0 =  · ()0 =  ·  ⇒ 00 =  · ()0 +  · 0 =  ·  +  ·  ·  =  · (1 + ) or +(1 + ) 51.  = 2 ⇒ 0 = 2 ln 2. At (0 1), 0 = 20 ln 2 = ln 2, and an equation of the tangent line is  − 1 = (ln 2)( − 0) or  = (ln 2) + 1. 52.  = √1 + 3 = (1 + 3)12 ⇒ 0 = 1 2(1 + 3)−12 · 32 = 32 2√1 + 3 . At (2 3), 0 = 23√· 49 = 2, and an equation of the tangent line is  − 3 = 2( − 2), or  = 2 − 1. 53.  = sin(sin ) ⇒ 0 = cos(sin ) · cos . At ( 0), 0 = cos(sin ) · cos  = cos(0) · (−1) = 1(−1) = −1, and an equation of the tangent line is  − 0 = −1( − ), or  = − + . 54.  = −2 ⇒ 0 = −2(−2) + −2(1) = −2(−22 + 1). At (0 0), 0 = 0(1) = 1, and an equation of the tangent line is  − 0 = 1( − 0) or  = . 55. (a)  = 2 1 + − ⇒ 0 = (1 + −)(0) − 2(−−) (1 + −)2 = 2− (1 + −)2 . At (0 1), 0 = 20 (1 + 0)2 = 2(1) (1 + 1)2 = 2 22 = 1 2 . So an equation of the tangent line is  − 1 = 1 2( − 0) or  = 1 2 + 1. (b) 56. (a) For   0, || = , and  = () = √2 − 2 ⇒  0() = √2 − 2 (1) −  1 2(2 − 2)−12(−2) √2 − 2 2 · (2 − 2)12 (2 − 2)12 = (2 − 2) + 2 (2 − 2)32 = 2 (2 − 2)32 So at (1 1), the slope of the tangent line is  0(1) = 2 and its equation is  − 1 = 2( − 1) or  = 2 − 1. (b) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.4 THE CHAIN RULE ¤ 203 57. (a) () =  √2 − 2 = (2 − 2)12 ⇒  0() =  · 1 2(2 − 2)−12(−2) + (2 − 2)12 · 1 = (2 − 2)−12 −2 + (2 − 2) = √2 2−−222 (b)  0 = 0 when  has a horizontal tangent line,  0 is negative when  is decreasing, and  0 is positive when  is increasing. 58. (a) From the graph of , we see that there are 5 horizontal tangents, so there must be 5 zeros on the graph of  0. From the symmetry of the graph of , we must have the graph of  0 as high at  = 0 as it is low at  = . The intervals of increase and decrease as well as the signs of  0 are indicated in the figure. (b) () = sin( + sin 2) ⇒  0() = cos(+sin 2)·   (+sin 2) = cos(+sin 2)(1+ 2 cos 2) 59. For the tangent line to be horizontal,  0() = 0. () = 2 sin  + sin2  ⇒  0() = 2 cos  + 2 sin  cos  = 0 ⇔ 2 cos (1 + sin ) = 0 ⇔ cos  = 0 or sin  = −1, so  = 2 + 2 or 32 + 2, where  is any integer. Now  2  = 3 and  32  = −1, so the points on the curve with a horizontal tangent are  2 + 2 3 and  32 + 2 −1, where  is any integer. 60.  = √1 + 2 ⇒ 0 = 1 2(1 + 2)−12 · 2 = √1 + 2 1 . The line 6 + 2 = 1 or  = −3 + 1 2 has slope −3, so the tangent line perpendicular to it must have slope 1 3. Thus, 1 3 = 1 √1 + 2 ⇔ √1 + 2 = 3 ⇒ 1 + 2 = 9 ⇔ 2 = 8 ⇔  = 4. When  = 4,  = 1 + 2(4) = 3, so the point is (4 3). 61. () = (()) ⇒  0() =  0(()) · 0(), so  0(5) =  0((5)) · 0(5) =  0(−2) · 6 = 4 · 6 = 24. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.204 ¤ CHAPTER 3 DIFFERENTIATION RULES 62. () = 4 + 3() ⇒ 0() = 1 2(4 + 3())−12 · 3 0(), so 0(1) = 1 2(4 + 3(1))−12 · 3 0(1) = 1 2(4 + 3 · 7)−12 · 3 · 4 = √625 = 6 5. 63. (a) () = (()) ⇒ 0() =  0(()) · 0(), so 0(1) =  0((1)) · 0(1) =  0(2) · 6 = 5 · 6 = 30. (b) () = (()) ⇒ 0() = 0(()) ·  0(), so 0(1) = 0((1)) ·  0(1) = 0(3) · 4 = 9 · 4 = 36. 64. (a)  () = (()) ⇒  0() =  0(()) ·  0(), so  0(2) =  0((2)) ·  0(2) =  0(1) · 5 = 4 · 5 = 20. (b) () = (()) ⇒ 0() = 0(()) · 0(), so 0(3) = 0((3)) · 0(3) = 0(2) · 9 = 7 · 9 = 63. 65. (a) () = (()) ⇒ 0() =  0(())0(). So 0(1) =  0((1))0(1) =  0(3)0(1). To find  0(3), note that  is linear from (2 4) to (6 3), so its slope is 3 − 4 6 − 2 = − 1 4 . To find 0(1), note that  is linear from (0 6) to (2 0), so its slope is 0 − 6 2 − 0 = −3. Thus,  0(3)0(1) = − 1 4(−3) = 3 4. (b) () = (()) ⇒ 0() = 0(()) 0(). So 0(1) = 0((1)) 0(1) = 0(2) 0(1), which does not exist since 0(2) does not exist. (c) () = (()) ⇒ 0() = 0(())0(). So 0(1) = 0((1))0(1) = 0(3)0(1). To find 0(3), note that  is linear from (2 0) to (5 2), so its slope is 2 − 0 5 − 2 = 2 3 . Thus, 0(3)0(1) =  2 3(−3) = −2. 66. (a) () = (()) ⇒ 0() =  0(()) 0(). So 0(2) =  0((2)) 0(2) =  0(1) 0(2) ≈ (−1)(−1) = 1. (b) () = (2) ⇒ 0() =  0(2) ·   2 =  0(2)(2). So 0(2) =  0(2 2)(2 · 2) = 4 0(4) ≈ 4(2) = 8. 67. The point (3 2) is on the graph of , so (3) = 2. The tangent line at (3 2) has slope ∆ ∆ = −4 6 = − 2 3 . () = () ⇒ 0() = 1 2[()]−12 ·  0() ⇒ 0(3) = 1 2[(3)]−12 ·  0(3) = 1 2(2)−12(− 2 3) = − 1 3√2 or − 1 6√2. 68. (a)  () = () ⇒  0() =  0()   () =  0()−1 (b) () = [()] ⇒ 0() =  [()]−1  0() 69. (a)  () = () ⇒  0() =  0()   () =  0() (b) () = () ⇒ 0() = ()   () = () 0() 70. (a) () =  + () ⇒ 0() =  ·  +  0() ⇒ 0(0) = 0 ·  +  0(0) =  + 5. 0() =  +  0() ⇒ 00() =  ·  +  00() ⇒ 00(0) = 20 +  00(0) = 2 − 2. (b) () = () ⇒ 0() =  0() + () ·  ⇒ 0(0) = 0 0(0) + (0) · 0 = 5 + 3. An equation of the tangent line to the graph of  at the point (0 (0)) = (0 (0)) = (0 3) is  − 3 = (5 + 3)( − 0) or  = (5 + 3) + 3. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.4 THE CHAIN RULE ¤ 205 71. () = ((())) ⇒ 0() =  0((())) · 0(()) · 0(), so 0(1) =  0(((1))) · 0((1)) · 0(1) =  0((2)) · 0(2) · 4 =  0(3) · 5 · 4 = 6 · 5 · 4 = 120 72. () = (2) ⇒  0() = 0(2) 2 + (2) · 1 = 220(2) + (2) ⇒  00() = 2200(2) 2 + 0(2) 4 + 0(2) 2 = 4300(2) + 40(2) + 20(2) = 60(2) + 4300(2) 73. () = (3(4())) ⇒  0() =  0(3(4())) ·  (3(4())) =  0(3(4())) · 3 0(4()) ·   (4()) =  0(3(4())) · 3 0(4()) · 4 0(), so  0(0) =  0(3(4(0))) · 3 0(4(0)) · 4 0(0) =  0(3(4 · 0)) · 3 0(4 · 0) · 4 · 2 =  0(3 · 0) · 3 · 2 · 4 · 2 = 2 · 3 · 2 · 4 · 2 = 96. 74. () = ((())) ⇒  0() =  0((())) ·   ((())) =  0((())) ·  ·  0(()) ·   (()) + (()) · 1 =  0((())) · [ 0(()) · ( 0() + () · 1) + (())] , so  0(1) =  0(((1))) · [ 0((1)) · ( 0(1) + (1)) + ((1))] =  0((2)) · [ 0(2) · (4 + 2) + (2)] =  0(3) · [5 · 6 + 3] = 6 · 33 = 198. 75.  = 2( cos 3 +  sin 3) ⇒ 0 = 2(−3 sin 3 + 3 cos 3) + ( cos 3 +  sin 3) · 22 = 2(−3 sin 3 + 3 cos 3 + 2 cos 3 + 2 sin 3) = 2[(2 + 3) cos 3 + (2 − 3) sin 3] ⇒ 00 = 2[−3(2 + 3) sin 3 + 3(2 − 3) cos 3] + [(2 + 3) cos 3 + (2 − 3) sin 3] · 22 = 2{[−3(2 + 3) + 2(2 − 3)] sin 3 + [3(2 − 3) + 2(2 + 3)] cos 3} = 2[(−12 − 5) sin 3 + (−5 + 12) cos 3] Substitute the expressions for , 0, and 00 in 00 − 40 + 13 to get 00 − 40 + 13 = 2[(−12 − 5) sin 3 + (−5 + 12) cos 3] − 42[(2 + 3) cos 3 + (2 − 3) sin 3] + 132( cos 3 +  sin 3) = 2[(−12 − 5 − 8 + 12 + 13) sin 3 + (−5 + 12 − 8 − 12 + 13) cos 3] = 2[(0) sin 3 + (0) cos 3] = 0 Thus, the function  satisfies the differential equation 00 − 40 + 13 = 0. 76.  =  ⇒ 0 =  ⇒ 00 = 2. Substituting , 0, and 00 into 00 − 40 +  = 0 gives us 2 − 4 +  = 0 ⇒ (2 − 4 + 1) = 0. Since  6= 0, we must have 2 − 4 + 1 = 0 ⇒  = 4 ± √16 − 4 2 = 2 ± √3. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.206 ¤ CHAPTER 3 DIFFERENTIATION RULES 77. The use of , 2,   ,  is just a derivative notation (see text page 159). In general, (2) = 2 0(2), 2(2) = 4 00(2),   , (2) = 2 ()(2). Since () = cos  and 50 = 4(12) + 2, we have  (50)() =  (2)() = − cos , so 50 cos 2 = −250 cos 2. 78. () = −,  0() = − − − = (1 − )−,  00() = −− + (1 − )(−−) = ( − 2)−. Similarly,  000() = (3 − )−,  (4)() = ( − 4)−,   ,  (1000)() = ( − 1000)−. 79. () = 10 + 1 4 sin(10) ⇒ the velocity after  seconds is () = 0() = 1 4 cos(10)(10) = 52 cos(10) cms. 80. (a)  =  cos( + ) ⇒ velocity = 0 = − sin( + ). (b) If  6= 0 and  6= 0, then 0 = 0 ⇔ sin( + ) = 0 ⇔  +  =  ⇔  =  −   ,  an integer. 81. (a) () = 40 + 035 sin 2 54 ⇒   = 035 cos 25 4 524 = 0574 cos 25 4 = 754  cos 25 4 (b) At  = 1,   = 7 54 cos 2 54 ≈ 016. 82. () = 12 + 28 sin 365 2 ( − 80) ⇒ 0() = 28 cos 365 2 ( − 80) 365 2 . On March 21,  = 80, and 0(80) ≈ 00482 hours per day. On May 21,  = 141, and 0(141) ≈ 002398, which is approximately one-half of 0(80). 83. () = 2−15 sin 2 ⇒ () = 0() = 2[−15(cos 2)(2) + (sin 2)−15(−15)] = 2−15(2 cos 2 − 15 sin 2) 84. (a) lim →∞ () = lim →∞ 1 1 + − = 1 1 +  · 0 = 1, since   0 ⇒ − → −∞ ⇒ − → 0. (b) () = (1 + −)−1 ⇒   = −(1 + −)−2(−−) = (1 + −− )2 (c) From the graph of () = (1 + 10−05)−1, it seems that () = 08 (indicating that 80% of the population has heard the rumor) when  ≈ 74 hours. 85. (a) Use () =  with  = 00225 and  = −00467 to get 0() = ( ·  +  · 1) = ( + 1). 0(10) = 00225(0533)−0467 ≈ 00075, so the BAC was increasing at approximately 00075 (mgmL)min after 10 minutes. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.4 THE CHAIN RULE ¤ 207 (b) A half an hour later gives us  = 10 + 30 = 40. 0(40) = 00225(−0868)−1868 ≈ −00030, so the BAC was decreasing at approximately 00030 (mgmL)min after 40 minutes. 86. () = (143653) · (101395) ⇒  0() = (143653) · (101395)(ln 101395). The units for  0() are millions of people per year. The rates of increase for 1920, 1950, and 2000 are  0(20) ≈ 2625,  0(50) ≈ 3978, and  0(100) ≈ 7953, respectively. 87. By the Chain Rule, () =   =     =   () = ()   . The derivative  is the rate of change of the velocity with respect to time (in other words, the acceleration) whereas the derivative  is the rate of change of the velocity with respect to the displacement. 88. (a) The derivative  represents the rate of change of the volume with respect to the radius and the derivative  represents the rate of change of the volume with respect to time. (b) Since  = 4 3 3,   =     = 42   . 89. (a) Using a calculator or CAS, we obtain the model  =  with  ≈ 1000124369 and  ≈ 0000045145933. (b) Use 0() =  ln  (from Formula 5) with the values of  and  from part (a) to get 0(004) ≈ −67063 A. The result of Example 2.1.2 was −670 A. 90. (a)  =  with  = 4502714 × 10−20 and  = 1029953851, where  is measured in thousands of people. The fit appears to be very good. (b) For 1800: 1 = 5308 − 3929 1800 − 1790 = 1379, 2 = 7240 1810 −− 5308 1800 = 1932. So  0(1800) ≈ (1 + 2)2 = 16555 thousand peopleyear. For 1850: 1 = 23,192 − 17,063 1850 − 1840 = 6129, 2 = 311860 ,443 −− 23 1850 ,192 = 8251. So  0(1850) ≈ (1 + 2)2 = 719 thousand peopleyear. (c) Using  0() =  ln  (from Formula 7) with the values of  and  from part (a), we get  0(1800) ≈ 15685 and  0(1850) ≈ 68607. These estimates are somewhat less than the ones in part (b). (d) (1870) ≈ 41,94656. The difference of 34 million people is most likely due to the Civil War (1861–1865). 91. (a) Derive gives 0() = 45( − 2)8 (2 + 1)10 without simplifying. With either Maple or Mathematica, we first get 0() = 9 ( − 2)8 (2 + 1)9 − 18(2( −+ 1) 2)910 , and the simplification command results in the expression given by Derive. (b) Derive gives 0 = 2(3 −  + 1)3(2 + 1)4(173 + 62 − 9 + 3) without simplifying. With either Maple or Mathematica, we first get 0 = 10(2 + 1)4(3 −  + 1)4 + 4(2 + 1)5(3 −  + 1)3(32 − 1). If we use °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.208 ¤ CHAPTER 3 DIFFERENTIATION RULES Mathematica’s Factor or Simplify, or Maple’s factor, we get the above expression, but Maple’s simplify gives the polynomial expansion instead. For locating horizontal tangents, the factored form is the most helpful. 92. (a) () =  4 4 − +   + 1 + 112. Derive gives  0() = ((34+4 − + 1)( 1) 4 44− +− + 1 + 1 + 1) whereas either Maple or Mathematica give  0 () =  4 4 − +   + 1 + 1 34 (−41+  + 1)2 after simplification. (b)  0() = 0 ⇔ 34 − 1 = 0 ⇔  = ±4 1 3 ≈ ±07598. (c) Yes.  0() = 0 where  has horizontal tangents.  0 has two maxima and one minimum where  has inflection points. 93. (a) If  is even, then () = (−). Using the Chain Rule to differentiate this equation, we get  0() =  0(−)   (−) = − 0(−). Thus,  0(−) = − 0(), so  0 is odd. (b) If  is odd, then () = −(−). Differentiating this equation, we get  0() = − 0(−)(−1) =  0(−), so  0 is even. 94. (())0 = () [()]−10 =  0() [()]−1 + (−1) [()]−2 0()() =  0() () − ()0() [()]2 =  0()() − ()0() [()]2 This is an alternative derivation of the formula in the Quotient Rule. But part of the purpose of the Quotient Rule is to show that if  and  are differentiable, so is . The proof in Section 3.2 does that; this one doesn’t. 95. (a)   (sin  cos ) =  sin−1  cos  cos  + sin  (− sin ) [Product Rule] =  sin−1  (cos  cos  − sin  sin ) [factor out  sin−1 ] =  sin−1  cos( + ) [Addition Formula for cosine] =  sin−1  cos[( + 1)] [factor out ] (b)   (cos  cos ) =  cos−1  (− sin ) cos  + cos  (− sin ) [Product Rule] = − cos−1  (cos  sin  + sin  cos ) [factor out − cos−1 ] = − cos−1  sin( + ) [Addition Formula for sine] = − cos−1  sin[( + 1)] [factor out ] 96. “The rate of change of 5 with respect to  is eighty times the rate of change of  with respect to ” ⇔   5 = 80   ⇔ 54   = 80   ⇔ 54 = 80 (Note that  6= 0 since the curve never has a horizontal tangent) ⇔ 4 = 16 ⇔  = 2 (since   0 for all ) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.APPLIED PROJECT WHERE SHOULD A PILOT START DESCENT? ¤ 209 97. Since ◦ =  180   rad, we have   (sin ◦) =   sin 180   = 180  cos 180   = 180  cos ◦. 98. (a) () = || = √2 = (2)12 ⇒  0() = 1 2(2)−12(2) = √2 =  || for  6= 0.  is not differentiable at  = 0. (b) () = |sin | = √sin2  ⇒  0() = 1 2(sin2 )−122 sin  cos  = sin  |sin | cos  = cos − cos   if if sin sin     0 0  is not differentiable when  = ,  an integer. (c) () = sin || = sin √2 ⇒ 0() = cos || ·  || =  || cos  = cos − cos   if if     0 0  is not differentiable at 0. 99. The Chain Rule says that   =    , so 2 2 =       =         =          +         [Product Rule] =             +   22 =  22    2 +   22 100. From Exercise 99, 2 2 = 2 2    2 +   22 ⇒ 3 3 =   2 2 =     22    2 +      22  =      22     2 +       2  22 +        22 +     22    =      22        2 + 2  22  22 +            22  + 33   = 3 3    3 + 3  22  22 +   33 APPLIED PROJECT Where Should a Pilot Start Descent? 1. Condition (i) will hold if and only if all of the following four conditions hold: () (0) = 0 ()  0(0) = 0 (for a smooth landing) ()  0() = 0 (since the plane is cruising horizontally when it begins its descent) () () = . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.210 ¤ CHAPTER 3 DIFFERENTIATION RULES First of all, condition  implies that  (0) =  = 0, so () = 3 + 2 +  ⇒  0() = 32 + 2 + . But  0(0) =  = 0 by condition . So  0() = 32 + 2 =  (3 + 2). Now by condition , 3 + 2 = 0 ⇒  = −2 3. Therefore, () = −2 3 3 + 2. Setting  () =  for condition , we get () = −23 3 + 2 =  ⇒ − 2 3 2 + 2 =  ⇒ 1 3 2 =  ⇒  = 3 2 ⇒  = − 2 3 . So  =  () = −23 3 + 32 2. 2. By condition (ii),   = − for all , so  () =  − . Condition (iii) states that  2 2  ≤ . By the Chain Rule, we have   =     = − 2 3 32   + 32 (2)   = 6 32 − 6 2 (for  ≤ ) ⇒ 2 2 = 6 3 (2)   − 6 2   = −12 3 2  + 6 2 2 . In particular, when  = 0,  =  and so 2 2  =0 = − 122 3  + 6 2 2 = −6 2 2 . Thus,     22    =0 = 6 2 2 ≤ . (This condition also follows from taking  = 0.) 3. We substitute  = 860 mih2,  = 35,000 ft × 1 mi 5280 ft, and  = 300 mih into the result of part (b): 635,000 · 5280 1 (300)2 2 ≤ 860 ⇒  ≥ 300 6 · 5280 35,000 · 860 ≈ 645 miles. 4. Substituting the values of  and  in Problem 3 into () = −2 3 3 + 32 2 gives us  () = 3 + 2, where  ≈ −4937 × 10−5 and  ≈ 478 × 10−3. 3.5 Implicit Differentiation 1. (a)  (92 − 2) =   (1) ⇒ 18 − 2 0 = 0 ⇒ 2 0 = 18 ⇒ 0 = 9 (b) 92 − 2 = 1 ⇒ 2 = 92 − 1 ⇒  = ±√92 − 1, so 0 = ± 1 2(92 − 1)−12(18) = ±√992− 1. (c) From part (a), 0 = 9  = 9 ±√92 − 1, which agrees with part (b). 2. (a)  (22 +  + ) =   (1) ⇒ 4 + 1 + 0 +  · 1 = 0 ⇒ 0 = −4 −  − 1 ⇒ 0 = −4 + + 1 (b) 22 +  +  = 1 ⇒  = 1 − 22 −  ⇒  = 1  − 2 − 1, so 0 = − 1 2 − 2 (c) From part (a), 0 = −4 +  + 1  = −4 − 1   − 1  = −4 − 1 1 − 2 − 1 − 1  = −4 − 12 + 2 + 1 − 1 = −12 − 2, which agrees with part (b). °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.5 IMPLICIT DIFFERENTIATION ¤ 211 3. (a)   √ + √  =   (1) ⇒ 12−12 + 1 2−120 = 0 ⇒ 2√1 0 = −2√1 ⇒ 0 = −√√ (b) √ + √ = 1 ⇒ √ = 1 − √ ⇒  = (1 − √ )2 ⇒  = 1 − 2√ + , so 0 = −2 · 1 2 −12 + 1 = 1 − √1. (c) From part (a), 0 = − √ √ = − 1 − √ √ [from part (b)] = −√1 + 1, which agrees with part (b). 4. (a)   2 − 1 =   (4) ⇒ −2−2 + −20 = 0 ⇒ 12 0 = 22 ⇒ 0 = 222 (b) 2  − 1  = 4 ⇒ 1  = 2  − 4 ⇒ 1  = 2 − 4  ⇒  =  2 − 4, so 0 = (2 − 4)(1) − (−4) (2 − 4)2 = 2 (2 − 4)2 or 2(1 −12)2 . (c) From part (a), 0 = 22 2 = 22 −42 2 [from part (b)] = 2(22−24)2 = (2 −24)2 , which agrees with part (b). 5.   (2 − 4 + 2) =   (4) ⇒ 2 − 4[0 + (1)] + 2 0 = 0 ⇒ 2 0 − 40 = 4 − 2 ⇒ 0( − 2) = 2 −  ⇒ 0 = 2 −   − 2 6.   (22 +  − 2) =   (2) ⇒ 4 + 0 + (1) − 2 0 = 0 ⇒ 0 − 2 0 = −4 −  ⇒ ( − 2)0 = −4 −  ⇒ 0 = −4 −   − 2 7.   (4 + 22 + 3) =   (5) ⇒ 43 + 2 · 2 0 + 2 · 2 + 320 = 0 ⇒ 22 0 + 320 = −43 − 22 ⇒ (22 + 32)0 = −43 − 22 ⇒ 0 = −43 − 22 22 + 32 = − 2(22 + 2) (22 + 3) 8.   (3 − 2 + 3) =   (1) ⇒ 32 −  · 2 0 − 2 · 1 + 320 = 0 ⇒ 320 − 2  0 = 2 − 32 ⇒ (32 − 2) 0 = 2 − 32 ⇒ 0 = 2 − 32 32 − 2 = 2 − 32 (3 − 2) 9.   +2   =   (2 + 1) ⇒ ( + )(2 ()+−)22(1 + 0) = 2 0 ⇒ 22 + 2 − 2 − 2 0 = 2( + )2 0 ⇒ 2 + 2 = 2( + )2 0 + 2 0 ⇒ ( + 2) = [2(2 + 2 + 2) + 2] 0 ⇒ 0 = ( + 2) 22 + 42 + 23 + 2 Or: Start by clearing fractions and then differentiate implicitly. 10.  () =   ( − ) ⇒  0 +  · 1 = 1 − 0 ⇒  0 + 0 = 1 −  ⇒ 0( + 1) = 1 −  ⇒ 0 = 1 −   + 1 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.212 ¤ CHAPTER 3 DIFFERENTIATION RULES 11.  ( cos ) =   (2 + 2) ⇒ (− sin ) + cos  · 0 = 2 + 2 0 ⇒ cos  · 0 − 2 0 = 2 +  sin  ⇒ 0(cos  − 2) = 2 +  sin  ⇒ 0 = 2 +  sin  cos  − 2 12.   cos() =   (1 + sin ) ⇒ − sin()(0 +  · 1) = cos  · 0 ⇒ −0 sin() − cos  · 0 =  sin() ⇒ 0[− sin() − cos ] =  sin() ⇒ 0 =  sin() − sin() − cos  = −  sin()  sin() + cos  13.   √ +  =   4 + 4 ⇒ 1 2 ( + )−12 (1 + 0) = 43 + 430 ⇒ 1 2√ +  + 1 2√ +  0 = 43 + 430 ⇒ 2√1+  − 43 = 430 − 2√1+  0 ⇒ 1 − 83√ +  2√ +  = 83√ +  − 1 2√ +  0 ⇒ 0 = 18−3√83+√ +− 1 14.  ( sin ) =   ( + ) ⇒  cos  + sin  · 0 = 1 + 0 +  · 1 ⇒  sin  · 0 − 0 = 1 +  −  cos  ⇒ 0( sin  − ) = 1 +  −  cos  ⇒ 0 = 1 +  −  cos   sin  −  15.  () =   ( − ) ⇒  ·     = 1 − 0 ⇒  ·  · 1 −  · 0 2 = 1 − 0 ⇒  · 1 −  2 · 0 = 1 − 0 ⇒ 0 −  2 · 0 = 1 −   ⇒ 01 −  2  =  − ⇒ 0 =  −   2 −  2 = ( − ) 2 −  16.  () =   2 + 2 ⇒ 0 + (1) = 1 2 2 + 2−12 (2 + 2 0) ⇒ 0 +  = 2+ 2 + 2+ 2 0 ⇒ 0 − 2+ 2 0 = 2+ 2 −  ⇒ 2 + 2 −  2 + 2 0 =  −2 +2+2 2 ⇒ 0 = −2+22+−2 17.   tan−1(2) =   ( + 2) ⇒ 1 + (12)2 (20 +  · 2) = 1 +  · 2 0 + 2 · 1 ⇒ 2 1 + 42 0 − 2 0 = 1 + 2 − 1 +2 42 ⇒ 01 +242 − 2 = 1 + 2 − 1 +2 42 ⇒ 0 = 1 + 2 − 2 1 + 42 2 1 + 42 − 2 or 0 = 1 + 42 + 2 + 44 − 2 2 − 2 − 253 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.5 IMPLICIT DIFFERENTIATION ¤ 213 18.  ( sin  +  sin ) =   (1) ⇒  cos  · 0 + sin  · 1 +  cos  + sin  · 0 = 0 ⇒  cos  · 0 + sin  · 0 = − sin  −  cos  ⇒ 0( cos  + sin ) = − sin  −  cos  ⇒ 0 = − sin  −  cos   cos  + sin  19.   sin() =   cos( + ) ⇒ cos() · (0 +  · 1) = − sin( + ) · (1 + 0) ⇒  cos() 0 +  cos() = − sin( + ) − 0 sin( + ) ⇒  cos() 0 + 0 sin( + ) = − cos() − sin( + ) ⇒ [ cos() + sin( + )] 0 = −1 [ cos() + sin( + )] ⇒ 0 = − cos() + sin( + )  cos() + sin( + ) 20. tan( − ) =  1 + 2 ⇒ (1 + 2) tan( − ) =  ⇒ (1 + 2) sec2( − ) · (1 − 0) + tan( − ) · 2 = 0 ⇒ (1 + 2) sec2( − ) − (1 + 2) sec2( − ) · 0 + 2 tan( − ) = 0 ⇒ (1 + 2) sec2( − ) + 2 tan( − ) = 1 + (1 + 2) sec2( − ) · 0 ⇒ 0 = (1 + 2) sec2( − ) + 2 tan( − ) 1 + (1 + 2) sec2( − ) 21.   () + 2[()]3 =   (10) ⇒  0() + 2 · 3[()]2 ·  0() + [()]3 · 2 = 0. If  = 1, we have  0(1) + 12 · 3[(1)]2 ·  0(1) + [(1)]3 · 2(1) = 0 ⇒  0(1) + 1 · 3 · 22 ·  0(1) + 23 · 2 = 0 ⇒  0(1) + 12 0(1) = −16 ⇒ 13 0(1) = −16 ⇒  0(1) = − 16 13. 22.   [() +  sin ()] =   (2) ⇒ 0() +  cos () · 0() + sin () · 1 = 2. If  = 0, we have 0(0) + 0 + sin (0) = 2(0) ⇒ 0(0) + sin 0 = 0 ⇒ 0(0) + 0 = 0 ⇒ 0(0) = 0. 23.   (42 − 3 + 23) =   (0) ⇒ 4 · 2 + 2 · 43 0 − (3 · 1 +  · 32 0) + 2( · 32 + 3 · 0) = 0 ⇒ 432 0 − 32 0 + 23 0 = −24 + 3 − 62 ⇒ (432 − 32 + 23) 0 = −24 + 3 − 62 ⇒ 0 =   = −24 + 3 − 62 432 − 32 + 23 24.   ( sec ) =   ( tan ) ⇒  · sec  tan  · 0 + sec  · 1 =  · sec2  + tan  · 0 ⇒  sec  tan  · 0 − tan  · 0 =  sec2  − sec  ⇒ ( sec  tan  − tan ) 0 =  sec2  − sec  ⇒ 0 =   =  sec2  − sec   sec  tan  − tan  25.  sin 2 =  cos 2 ⇒  · cos 2 · 2 + sin 2 · 0 = (− sin 2 · 20) + cos(2) · 1 ⇒ sin 2 · 0 + 2 sin 2 · 0 = −2 cos 2 + cos 2 ⇒ 0(sin 2 + 2 sin 2) = −2 cos 2 + cos 2 ⇒ °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.214 ¤ CHAPTER 3 DIFFERENTIATION RULES 0 = −2 cos 2 + cos 2 sin 2 + 2 sin 2 . When  =  2 and  = 4 , we have 0 = (−2)(−1) + 0 0 +  · 1 = 2  = 1 2 , so an equation of the tangent line is  − 4 = 1 2( − 2 ), or  = 1 2. 26. sin( + ) = 2 − 2 ⇒ cos( + ) · (1 + 0) = 2 − 20 ⇒ cos( + ) · 0 + 20 = 2 − cos( + ) ⇒ 0[cos( + ) + 2] = 2 − cos( + ) ⇒ 0 = 2 − cos( + ) cos( + ) + 2. When  =  and  = , we have 0 = 21 + 2 − 1 = 1 3, so an equation of the tangent line is  −  = 1 3( − ), or  = 1 3 + 23 . 27. 2 −  − 2 = 1 ⇒ 2 − (0 +  · 1) − 2 0 = 0 ⇒ 2 − 0 −  − 2 0 = 0 ⇒ 2 −  = 0 + 2 0 ⇒ 2 −  = ( + 2) 0 ⇒ 0 = 2 −   + 2 . When  = 2 and  = 1, we have 0 = 4 − 1 2 + 2 = 3 4 , so an equation of the tangent line is  − 1 = 3 4( − 2), or  = 3 4 − 1 2. 28. 2 + 2 + 42 = 12 ⇒ 2 + 2 0 + 2 + 8 0 = 0 ⇒ 2 0 + 8 0 = −2 − 2 ⇒ ( + 4) 0 = − −  ⇒ 0 = −  +   + 4 . When  = 2 and  = 1, we have 0 = −2 + 1 2 + 4 = −12, so an equation of the tangent line is  − 1 = − 1 2( − 2) or  = − 1 2 + 2. 29. 2 + 2 = (22 + 22 − )2 ⇒ 2 + 2 0 = 2(22 + 22 − )(4 + 4 0 − 1). When  = 0 and  = 1 2, we have 0 + 0 = 2( 1 2)(20 − 1) ⇒ 0 = 20 − 1 ⇒ 0 = 1, so an equation of the tangent line is  − 1 2 = 1( − 0) or  =  + 1 2. 30. 23 + 23 = 4 ⇒ 2 3−13 + 2 3−130 = 0 ⇒ √31 + 30 = 0 ⇒ 0 = − √33  . When  = −3 √3 and  = 1, we have 0 = − 1 −3 √3 13 = − −3 √3 23 −3 √3 = 3 3 √3 = 1 √ 3 , so an equation of the tangent line is  − 1 = √13 + 3 √3  or  = √13 + 4. 31. 2(2 + 2)2 = 25(2 − 2) ⇒ 4(2 + 2)(2 + 2 0) = 25(2 − 2 0) ⇒ 4( +  0)(2 + 2) = 25( −  0) ⇒ 4 0(2 + 2) + 250 = 25 − 4(2 + 2) ⇒ 0 = 25 − 4(2 + 2) 25 + 4(2 + 2) . When  = 3 and  = 1, we have 0 = 75 25 + 40 − 120 = − 45 65 = − 13 9 , so an equation of the tangent line is  − 1 = − 13 9 ( − 3) or  = − 13 9  + 40 13. 32. 2(2 − 4) = 2(2 − 5) ⇒ 4 − 42 = 4 − 52 ⇒ 43 0 − 8 0 = 43 − 10. When  = 0 and  = −2, we have −320 + 160 = 0 ⇒ −160 = 0 ⇒ 0 = 0, so an equation of the tangent line is  + 2 = 0( − 0) or  = −2. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.5 IMPLICIT DIFFERENTIATION ¤ 215 33. (a) 2 = 54 − 2 ⇒ 2 0 = 5(43) − 2 ⇒ 0 = 103 −   . So at the point (1 2) we have 0 = 10(1)3 − 1 2 = 9 2 , and an equation of the tangent line is  − 2 = 9 2( − 1) or  = 9 2 − 5 2. (b) 34. (a) 2 = 3 + 32 ⇒ 2 0 = 32 + 3(2) ⇒ 0 = 32 + 6 2 . So at the point (1 −2) we have 0 = 3(1)2 + 6(1) 2(−2) = − 9 4 , and an equation of the tangent line is  + 2 = − 9 4( − 1) or  = − 9 4 + 1 4. (b) The curve has a horizontal tangent where 0 = 0 ⇔ 32 + 6 = 0 ⇔ 3( + 2) = 0 ⇔  = 0 or  = −2. But note that at  = 0,  = 0 also, so the derivative does not exist. At  = −2, 2 = (−2)3 + 3(−2)2 = −8 + 12 = 4, so  = ±2. So the two points at which the curve has a horizontal tangent are (−2 −2) and (−2 2). (c) 35. 2 + 42 = 4 ⇒ 2 + 8 0 = 0 ⇒ 0 = −(4) ⇒ 00 = −1 4  · 1 −  · 0 2 = − 1 4  − [−(4)] 2 = − 1 4 42 + 2 43 = − 1 4 4 43 original equation since  and  must satisfy the 2 + 42 = 4  Thus, 00 = − 1 43 . 36. 2 +  + 2 = 3 ⇒ 2 + 0 +  + 2 0 = 0 ⇒ ( + 2)0 = −2 −  ⇒ 0 = −2 −   + 2 . Differentiating 2 + 0 +  + 2 0 = 0 to find 00 gives 2 + 00 + 0 + 0 + 2 00 + 200 = 0 ⇒ ( + 2) 00 = −2 − 20 − 2(0)2 = −2 1 − 2+ 2 +  + 2+ 2 +  2 ⇒ 00 = − 2  + 2 ( + 2)2 − (2(+ + 2 )(+ 2 )2 ) + (2 + )2  = − 2 ( + 2)3 (2 + 4 + 42 − 22 − 4 −  − 22 + 42 + 4 + 2) = − 2 ( + 2)3 (32 + 3 + 32) = −( + 2 2 )3 (9) original equation since  and must satisfy the 2 +  + 2 = 3  Thus, 00 = − 18 ( + 2)3 . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.216 ¤ CHAPTER 3 DIFFERENTIATION RULES 37. sin  + cos  = 1 ⇒ cos  · 0 − sin  = 0 ⇒ 0 = sin  cos  ⇒ 00 = cos  cos  − sin (− sin ) 0 (cos )2 = cos  cos  + sin  sin (sin  cos ) cos2  = cos2  cos  + sin2  sin  cos2  cos  = cos2  cos  + sin2  sin  cos3  Using sin  + cos  = 1, the expression for 00 can be simplified to 00 = (cos2  + sin ) cos3  38. 3 − 3 = 7 ⇒ 32 − 320 = 0 ⇒ 0 = 2 2 ⇒ 00 = 2(2) − 2(2 0) (2)2 = 2[ − (22)] 4 = 2( − 32) 3 = 2(3 − 3) 32 = 2(−7) 5 = −14 5 39. If  = 0 in  +  = , then we get 0 +  = , so  = 1 and the point where  = 0 is (0 1). Differentiating implicitly with respect to  gives us 0 +  · 1 + 0 = 0. Substituting 0 for  and 1 for  gives us 0 + 1 + 0 = 0 ⇒ 0 = −1 ⇒ 0 = −1. Differentiating 0 +  + 0 = 0 implicitly with respect to  gives us 00 + 0 · 1 + 0 + 00 + 0 · 0 = 0. Now substitute 0 for , 1 for , and −1 for 0. 0 + −1 + −1 + 00 + −1 () −1 = 0 ⇒ −2 + 00 + 1 = 0 ⇒ 00 = 1 ⇒ 00 = 12 . 40. If  = 1 in 2 +  + 3 = 1, then we get 1 +  + 3 = 1 ⇒ 3 +  = 0 ⇒ (2 + 1) ⇒  = 0, so the point where  = 1 is (1 0). Differentiating implicitly with respect to  gives us 2 + 0 +  · 1 + 32 · 0 = 0. Substituting 1 for  and 0 for  gives us 2 + 0 + 0 + 0 = 0 ⇒ 0 = −2. Differentiating 2 + 0 +  + 320 = 0 implicitly with respect to  gives us 2 + 00 + 0 · 1 + 0 + 3(200 + 0 · 20) = 0. Now substitute 1 for , 0 for , and −2 for 0. 2 + 00 + (−2) + (−2) + 3(0 + 0) = 0 ⇒ 00 = 2. Differentiating 2 + 00 + 20 + 3200 + 6(0)2 = 0 implicitly with respect to  gives us 000 + 00 · 1 + 200 + 3(2000 + 00 · 20) + 6[ · 2000 + (0)20] = 0. Now substitute 1 for , 0 for , −2 for 0, and 2 for 00. 000 + 2 + 4 + 3(0 + 0) + 6[0 + (−8)] = 0 ⇒ 000 = −2 − 4 + 48 = 42. 41. (a) There are eight points with horizontal tangents: four at  ≈ 157735 and four at  ≈ 042265. (b) 0 = 32 − 6 + 2 2(23 − 32 −  + 1) ⇒ 0 = −1 at (0 1) and 0 = 1 3 at (0 2). Equations of the tangent lines are  = − + 1 and  = 1 3 + 2. (c) 0 = 0 ⇒ 32 − 6 + 2 = 0 ⇒  = 1 ± 1 3√3 (d) By multiplying the right side of the equation by  − 3, we obtain the first graph. By modifying the equation in other ways, we can generate the other graphs. (2 − 1)( − 2) = ( − 1)( − 2)( − 3) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.5 IMPLICIT DIFFERENTIATION ¤ 217 (2 − 4)( − 2) = ( − 1)( − 2) ( + 1)(2 − 1)( − 2) = ( − 1)( − 2) ( + 1)(2 − 1)( − 2) = ( − 1)( − 2) ( + 1)(2 − 1)( − 2) = ( − 1)( − 2) (2 + 1)( − 2) = (2 − 1)( − 2) ( + 1)(2 − 2) = ( − 1)(2 − 2) 42. (a) (b)  (23 + 2 − 5) =   (4 − 23 + 2) ⇒ 620 + 2 0 − 540 = 43 − 62 + 2 ⇒ 0 = 2(22 − 3 + 1) 62 + 2 − 54 = 2(2 − 1)( − 1) (6 + 2 − 53) . From the graph and the values for which 0 = 0, we speculate that there are 9 points with horizontal tangents: 3 at  = 0, 3 at  = 1 2, and 3 at  = 1. The three horizontal tangents along the top of the wagon are hard to find, but by limiting the -range of the graph (to [16 17], for example) they are distinguishable. 43. From Exercise 31, a tangent to the lemniscate will be horizontal if 0 = 0 ⇒ 25 − 4(2 + 2) = 0 ⇒ [25 − 4(2 + 2)] = 0 ⇒ 2 + 2 = 25 4 (1). (Note that when  is 0,  is also 0, and there is no horizontal tangent at the origin.) Substituting 25 4 for 2 + 2 in the equation of the lemniscate, 2(2 + 2)2 = 25(2 − 2), we get 2 − 2 = 25 8 (2). Solving (1) and (2), we have 2 = 75 16 and 2 = 25 16, so the four points are ± 5√4 3 ± 5 4. 44. 2 2 + 2 2 = 1 ⇒ 22 + 2 2 0 = 0 ⇒ 0 = −22 ⇒ an equation of the tangent line at (0 0) is  − 0 = −20 20 ( − 0). Multiplying both sides by 20 gives 02 − 202 = −02 + 22 0 . Since (0 0) lies on the ellipse, we have 0 2 + 0 2 = 2 0 2 + 02 2 = 1. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.218 ¤ CHAPTER 3 DIFFERENTIATION RULES 45. 2 2 − 2 2 = 1 ⇒ 22 − 2 2 0 = 0 ⇒ 0 = 22 ⇒ an equation of the tangent line at (0 0) is  − 0 = 20 20 ( − 0). Multiplying both sides by 20 gives 02 − 202 = 02 − 22 0 . Since (0 0) lies on the hyperbola, we have 0 2 − 0 2 = 2 0 2 − 02 2 = 1. 46. √ +  = √ ⇒ 1 2 √ + 0 2  = 0 ⇒ 0 = −  √ ⇒ an equation of the tangent line at (0 0) is  − 0 = − 0 √0 ( − 0). Now  = 0 ⇒  = 0 − 0 √0 (−0) = 0 + √0 0, so the -intercept is 0 + √0 0. And  = 0 ⇒ −0 = − 0 √0 ( − 0) ⇒  − 0 = 0 √0 0 ⇒  = 0 + √0 0, so the -intercept is 0 + √0 0. The sum of the intercepts is 0 + √0 0  + 0 + √0 0  = 0 + 2 √0 0 + 0 = √0 + 0 2 = √ 2 = . 47. If the circle has radius , its equation is 2 + 2 = 2 ⇒ 2 + 20 = 0 ⇒ 0 = −  , so the slope of the tangent line at (0 0) is −0 0 . The negative reciprocal of that slope is −1 −00 = 0 0 , which is the slope of , so the tangent line at  is perpendicular to the radius  . 48.  =  ⇒ −10 = −1 ⇒ 0 = −1 −1 = −1  = −1  =   ()−1 49.  = (tan−1 )2 ⇒ 0 = 2(tan−1 )1 ·  (tan−1 ) = 2 tan−1  · 1 +12 = 2 tan 1 +−12 50.  = tan−1(2) ⇒ 0 = 1 1 + (2)2 ·  (2) = 1 +14 · 2 = 1 +24 51.  = sin−1(2 + 1) ⇒ 0 = 1 − (21 + 1)2 ·   (2 + 1) = 1 − (421+ 4 + 1) · 2 = √−422 − 4 = √−12 −  52. () = arccos √ ⇒ 0() = −1 −1(√)2   √ = −√11−  1 2−12 = −2√ √11 −  53. () =  sec−1(3) ⇒PR  0() =  · 1 3(3)2 − 1   (3) + sec−1(3) · 1 = 3√(362−) 1 + sec−1(3) = √63− 1 + sec−1(3) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.5 IMPLICIT DIFFERENTIATION ¤ 219 54.  = tan−1  − √2 + 1  ⇒ 0 = 1 1 +  − √2 + 1 2 1 − √2+ 1 = 1 + 2 − 2 √12 + 1 + 2 + 1 √√2+ 1 2 + 1 −  = √2 + 1 −  21 + 2 −  √2 + 1  √2 + 1 = √2 + 1 −  2√2 + 1 (1 + 2) − (2 + 1) = √2 + 1 −  2(1 + 2)√2 + 1 −  = 1 2(1 + 2) 55. () = cot−1() + cot−1(1) ⇒ 0() = − 1 1 + 2 − 1 1 + (1)2 ·   1  = − 1 1 + 2 − 2 2 + 1 · −12  = −1 +1 2 + 2 1+ 1 = 0. Note that this makes sense because () =  2 for   0 and () = 3 2 for   0. 56. () = arcsin(1) ⇒ 0() = 1 −1(1)2   1 = 1 −1 12 −12  = −1 −1 12 √14 = − 1 √4 − 2 = − 1 2(2 − 1) = − 1 |  | √2 − 1 57.  =  sin−1  + √1 − 2 ⇒ 0 =  · √1 1− 2 + (sin−1 )(1) + 12(1 − 2)−12(−2) = √1 − 2 + sin−1  − √1 − 2 = sin−1  58.  = cos−1(sin−1 ) ⇒ 0 = −1 − (sin 1 −1 )2 ·   sin−1  = −1 − (sin 1 −1 )2 · √11− 2 59.  = arccos ++ cos cos   ⇒ 0 = −1 − +1 + cos cos   2 ( +  cos )(− sin ( +)−cos (+)2 cos )(− sin ) = 1 √2 + 2 cos2  − 2 − 2 cos2  (2 − 2) sin  | +  cos | = 1 √2 − 2 √1 − cos2  (2 − 2) sin  | +  cos | = √2 − 2 | +  cos | sin  |sin | But 0 ≤  ≤ , so |sin | = sin . Also     0 ⇒  cos  ≥ −  −, so  +  cos   0. Thus 0 = √2 − 2  +  cos . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.220 ¤ CHAPTER 3 DIFFERENTIATION RULES 60.  = arctan1 1 +−   = arctan 11 + − 12 ⇒ 0 = 1 1 + 1 1 +−   2 ·   1 + 1 −  12 = 1 + 11 −  1 +  · 1 2 11 + − −12 · (1 + )(−(1 + 1) −)(1 2 − )(1) = 1 1 +  1 +  + 1 −  1 +  · 1 2 1 + 1 − 12 · (1 +−2)2 = 1 +2  · 12 · (1 + (1 − ))1 1 2 2 · (1 +−2)2 = −1 2(1 − )12(1 + )12 = −1 2 √1 − 2 61. () = √1 − 2 arcsin  ⇒  0() = √1 − 2 · √1 1− 2 + arcsin  · 1 2 1 − 2−12 (−2) = 1 − √arcsin 1 − 2 Note that  0 = 0 where the graph of  has a horizontal tangent. Also note that  0 is negative when  is decreasing and  0 is positive when  is increasing. 62. () = arctan(2 − ) ⇒  0() = 1 1 + (2 − )2 ·  (2 − ) = 1 + ( 22−−1)2 Note that  0 = 0 where the graph of  has a horizontal tangent. Also note that  0 is negative when  is decreasing and  0 is positive when  is increasing. 63. Let  = cos−1 . Then cos  =  and 0 ≤  ≤  ⇒ − sin   = 1 ⇒   = − 1 sin  = − 1 1 − cos2  = − 1 √1 − 2 . [Note that sin  ≥ 0 for 0 ≤  ≤ .] 64. (a) Let  = sec−1 . Then sec  =  and  ∈ 0 2  ∪  32. Differentiate with respect to : sec  tan     = 1 ⇒   = 1 sec  tan = 1 sec  sec2  − 1 = 1  √2 − 1. Note that tan2  = sec2  − 1 ⇒ tan  = sec2  − 1 since tan   0 when 0    2 or     32 . (b)  = sec−1  ⇒ sec  =  ⇒ sec  tan    = 1 ⇒   = sec 1tan  . Now tan2  = sec2  − 1 = 2 − 1, so tan  = ±√2 − 1. For  ∈ 0 2 ,  ≥ 1, so sec  =  = || and tan ≥ 0 ⇒   = 1  √2 − 1 = 1 || √2 − 1. For  ∈  2  ,  ≤ −1, so || = − and tan  = −√2 − 1 ⇒   = 1 sec  tan  = 1 −√2 − 1  = 1 (−) √2 − 1 = 1 || √2 − 1. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.5 IMPLICIT DIFFERENTIATION ¤ 221 65. 2 + 2 = 2 is a circle with center  and  +  = 0 is a line through  [assume  and  are not both zero]. 2 + 2 = 2 ⇒ 2 + 20 = 0 ⇒ 0 = −, so the slope of the tangent line at 0 (0 0) is −00. The slope of the line 0 is 00, which is the negative reciprocal of −00. Hence, the curves are orthogonal, and the families of curves are orthogonal trajectories of each other. 66. The circles 2 + 2 =  and 2 + 2 =  intersect at the origin where the tangents are vertical and horizontal [assume  and  are both nonzero]. If (0 0) is the other point of intersection, then 2 0 + 02 = 0 (1) and 2 0 + 02 = 0 (2). Now 2 + 2 =  ⇒ 2 + 20 =  ⇒ 0 =  − 2 2 and 2 + 2 =  ⇒ 2 + 20 = 0 ⇒ 0 = 2  − 2 . Thus, the curves are orthogonal at (0 0) ⇔  − 20 20 = −  − 20 20 ⇔ 20 − 42 0 = 402 − 20 ⇔ 0 + 0 = 2(2 0 + 02), which is true by (1) and (2). 67.  = 2 ⇒ 0 = 2 and 2 + 22 =  [assume   0] ⇒ 2 + 40 = 0 ⇒ 20 = − ⇒ 0 = −  2() = −  2(2) = − 1 2 , so the curves are orthogonal if  6= 0. If  = 0, then the horizontal line  = 2 = 0 intersects 2 + 22 =  orthogonally at ±√ 0, since the ellipse 2 + 22 =  has vertical tangents at those two points. 68.  = 3 ⇒ 0 = 32 and 2 + 32 =  [assume   0] ⇒ 2 + 60 = 0 ⇒ 30 = − ⇒ 0 = −  3() = −  3(3) = − 1 32 , so the curves are orthogonal if  6= 0. If  = 0, then the horizontal line  = 3 = 0 intesects 2 + 32 =  orthogonally at ±√ 0, since the ellipse 2 + 32 =  has vertical tangents at those two points. 69. Since 2  2, we are assured that there are four points of intersection. (1) 2 2 + 2 2 = 1 ⇒ 22 + 2 2 0 = 0 ⇒  20 = −2 ⇒ 0 = 1 = − 2 2 . (2) 2 2 − 2 2 = 1 ⇒ 22 − 220 = 0 ⇒  20 = 2 ⇒ 0 = 2 = 2 2 . Now 12 = − 2 2 · 2 2 = − 22 22 · 2 2 (3). Subtracting equations, (1) − (2), gives us 22 + 22 − 22 + 22 = 0 ⇒ °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.222 ¤ CHAPTER 3 DIFFERENTIATION RULES 2 2 + 2 2 = 2 2 − 2 2 ⇒ 22 + 22 22 = 22 − 22 22 ⇒ 2(2 + 2) 22 = 2(2 − 2) 22 (4). Since 2 − 2 = 2 + 2, we have 2 − 2 = 2 + 2. Thus, equation (4) becomes 2 22 = 2 22 ⇒ 2 2 = 22 22 , and substituting for 2 2 in equation (3) gives us 12 = −2222 · 2222 = −1. Hence, the ellipse and hyperbola are orthogonal trajectories. 70.  = ( + )−1 ⇒ 0 = −( + )−2 and  = ( + )13 ⇒ 0 = 1 3( + )−23, so the curves are othogonal if the product of the slopes is −1, that is, −1 ( + )2 ·  3( + )23 = −1 ⇒  = 3( + )2( + )23 ⇒  = 312  2 [since 2 = ( + )−2 and 2 = 2( + )23] ⇒  = 312  ⇒ 3 = 3 ⇒  = √3 3. 71. (a)  + 22 ( − ) =  ⇒   −   + 2 − 3 2 =  ⇒   (  −   + 2 −1 − 3 −2) =   () ⇒   0 +  · 1 −  − 2 −2 ·  0 + 23 −3 ·  0 = 0 ⇒  0( − 2 −2 + 23 −3) =  −  ⇒  0 =  −   − 2 −2 + 23 −3 or   =  3( −  )   3 − 2 + 23 (b) Using the last expression for  from part (a), we get   = (10 L)3[(1 mole)(004267 Lmole) − 10 L]  (25 atm)(10 L)3 − (1 mole)2(3592 L2- atm mole2)(10 L) + 2(1 mole)3(3592 L2- atm mole2)(004267 L mole)  = −995733 L4 2464386541 L3- atm ≈ −404 L atm 72. (a) 2 +  + 2 + 1 = 0 ⇒ 2 + 0 +  · 1 + 20 + 0 = 0 ⇒ 0( + 2) = −2 −  ⇒ 0 = −2 −   + 2 (b) Plotting the curve in part (a) gives us an empty graph, that is, there are no points that satisfy the equation. If there were any points that satisfied the equation, then  and  would have opposite signs; otherwise, all the terms are positive and their sum can not equal 0. 2 +  + 2 + 1 = 0 ⇒ 2 + 2 + 2 −  + 1 = 0 ⇒ ( + )2 =  − 1. The left side of the last equation is nonnegative, but the right side is at most −1, so that proves there are no points that satisfy the equation. Another solution: 2 +  + 2 + 1 = 1 22 +  + 1 22 + 1 22 + 1 22 + 1 = 1 2(2 + 2 + 2) + 1 2(2 + 2) + 1 = 12 ( + )2 + 1 2(2 + 2) + 1 ≥ 1 Another solution: Regarding 2 +  + 2 + 1 = 0 as a quadratic in , the discriminant is 2 − 4(2 + 1) = −32 − 4. This is negative, so there are no real solutions. (c) The expression for 0 in part (a) is meaningless; that is, since the equation in part (a) has no solution, it does not implicitly define a function  of , and therefore it is meaningless to consider 0. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.5 IMPLICIT DIFFERENTIATION ¤ 223 73. To find the points at which the ellipse 2 −  + 2 = 3 crosses the -axis, let  = 0 and solve for .  = 0 ⇒ 2 − (0) + 02 = 3 ⇔  = ±√3. So the graph of the ellipse crosses the -axis at the points ±√3 0. Using implicit differentiation to find 0, we get 2 − 0 −  + 20 = 0 ⇒ 0(2 − ) =  − 2 ⇔ 0 =  − 2 2 −  . So 0 at √3 0 is 0 − 2 √3 2(0) − √3 = 2 and 0 at −√3 0 is 2(0) + 0 + 2 √√33 = 2. Thus, the tangent lines at these points are parallel. 74. (a) We use implicit differentiation to find 0 =  − 2 2 −  as in Exercise 73. The slope of the tangent line at (−1 1) is  = 1 − 2(−1) 2(1) − (−1) = 3 3 = 1, so the slope of the normal line is − 1  = −1, and its equation is  − 1 = −1( + 1) ⇔  = −. Substituting − for  in the equation of the ellipse, we get 2 − (−) + (−)2 = 3 ⇒ 32 = 3 ⇔  = ±1. So the normal line must intersect the ellipse again at  = 1, and since the equation of the line is  = −, the other point of intersection must be (1 −1). (b) 75. 22 +  = 2 ⇒ 2 · 20 + 2 · 2 +  · 0 +  · 1 = 0 ⇔ 0(22 + ) = −22 −  ⇔ 0 = −22 +  22 + . So −22 22 ++  = −1 ⇔ 22 +  = 22 +  ⇔ (2 + 1) = (2 + 1) ⇔ (2 + 1) − (2 + 1) = 0 ⇔ (2 + 1)( − ) = 0 ⇔  = − 1 2 or  = . But  = − 1 2 ⇒ 22 +  = 1 4 − 1 2 6= 2, so we must have  = . Then 22 +  = 2 ⇒ 4 + 2 = 2 ⇔ 4 + 2 − 2 = 0 ⇔ (2 + 2)(2 − 1) = 0. So 2 = −2, which is impossible, or 2 = 1 ⇔  = ±1. Since  = , the points on the curve where the tangent line has a slope of −1 are (−1 −1) and (1 1). 76. 2 + 42 = 36 ⇒ 2 + 80 = 0 ⇒ 0 = −  4 . Let ( ) be a point on 2 + 42 = 36 whose tangent line passes through (12 3). The tangent line is then  − 3 = −  4 ( − 12), so  − 3 = −4 ( − 12). Multiplying both sides by 4 gives 42 − 12 = −2 + 12, so 42 + 2 = 12( + ). But 42 + 2 = 36, so 36 = 12( + ) ⇒  +  = 3 ⇒  = 3 − . Substituting 3 −  for  into 2 + 42 = 36 gives 2 + 4(3 − )2 = 36 ⇔ 2 + 36 − 24 + 42 = 36 ⇔ 52 − 24 = 0 ⇔ (5 − 24) = 0, so  = 0 or  = 24 5 . If  = 0,  = 3 − 0 = 3, and if  = 24 5 ,  = 3 − 24 5 = − 9 5. So the two points on the ellipse are (0 3) and  24 5  − 9 5. Using  − 3 = −  4( − 12) with ( ) = (0 3) gives us the tangent line  − 3 = 0 or  = 3. With ( ) =  24 5  − 9 5, we have  − 3 = − 4(24 −955)( − 12) ⇔  − 3 = 2 3( − 12) ⇔  = 2 3 − 5. A graph of the ellipse and the tangent lines confirms our results. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.224 ¤ CHAPTER 3 DIFFERENTIATION RULES 77. (a) If  = −1(), then () = . Differentiating implicitly with respect to  and remembering that  is a function of , we get  0()   = 1, so   =  01() ⇒ −10() =  0(−11()). (b) (4) = 5 ⇒ −1(5) = 4. By part (a), −10(5) = 1  0(−1(5)) = 1  0(4) = 1  2 3 = 3 2. 78. (a) Assume   . Since  is an increasing function,   , and hence,  +    + ; that is, ()  () So () =  +  is an increasing function and therefore one-to-one. (b) −1(1) =  ⇔ () = 1, so we need to find  such that () = 1. By inspection, we see that (0) = 0 + 0 = 1, so  = 0, and hence, −1(1) = 0. (c) (−1)0(1) = 1  0(−1(1)) = 1  0(0) [by part (b)]. Now () =  +  ⇒  0() = 1 + , so  0(0) = 1 + 0 = 2. Thus, (−1)0(1) = 1 2. 79. (a)  = () and 00 + 0 +  = 0 ⇒  00() +  0() + () = 0. If  = 0, we have 0 +  0(0) + 0 = 0, so  0(0) = 0. (b) Differentiating 00 + 0 +  = 0 implicitly, we get 000 + 00 · 1 + 00 + 0 +  · 1 = 0 ⇒ 000 + 200 + 0 +  = 0, so  000() + 2 00() +  0() + () = 0. If  = 0, we have 0 + 2 00(0) + 0 + 1 [(0) = 1 is given] = 0 ⇒ 200(0) = −1 ⇒  00(0) = − 1 2. 80. 2 + 42 = 5 ⇒ 2 + 4(20) = 0 ⇒ 0 = −  4 . Now let  be the height of the lamp, and let ( ) be the point of tangency of the line passing through the points (3 ) and (−5 0). This line has slope ( − 0)[3 − (−5)] = 1 8. But the slope of the tangent line through the point ( ) can be expressed as 0 = −  4, or as  − 0  − (−5) =   + 5 [since the line passes through (−5 0) and ( )], so −  4 =   + 5 ⇔ 42 = −2 − 5 ⇔ 2 + 42 = −5. But 2 + 42 = 5 [since ( ) is on the ellipse], so 5 = −5 ⇔  = −1. Then 42 = −2 − 5 = −1 − 5(−1) = 4 ⇒  = 1, since the point is on the top half of the ellipse. So  8 =   + 5 = 1 −1 + 5 = 1 4 ⇒  = 2. So the lamp is located 2 units above the -axis. LABORATORY PROJECT Families of Implicit Curves 1. (a) There appear to be nine points of intersection. The “inner four” near the origin are about (±02 −09) and (±03 −11). The “outer five” are about (20 −89), (−28 −88), (−75 −77), (−78 −47), and (−80 15). °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.LABORATORY PROJECT FAMILIES OF IMPLICIT CURVES ¤ 225 (b) We see from the graphs with  = 5 and  = 10, and for other values of , that the curves change shape but the nine points of intersection are the same. 2. (a) If  = 0, the graph is the unit circle. As  increases, the graph looks more diamondlike and then more crosslike (see the graph for  ≥ 0). For −1    0 (see the graph), there are four hyperboliclike branches as well as an ellipticlike curve bounded by || ≤ 1 and || ≤ 1 for values of  close to 0. As  gets closer to −1, the branches and the curve become more rectangular, approaching the lines || = 1 and || = 1. For  = −1, we get the lines  = ±1 and  = ±1. As  decreases, we get four test-tubelike curves (see the graph) that are bounded by || = 1 and || = 1, and get thinner as || gets larger.  ≥ 0 −1    0  ≤ −1 (b) The curve for  = −1 is described in part (a). When  = −1, we get 2 + 2 − 22 = 1 ⇔ 0 = 22 − 2 − 2 + 1 ⇔ 0 = (2 − 1)(2 − 1) ⇔  = ±1 or  = ±1, which algebraically proves that the graph consists of the stated lines. (c)  (2 + 2 + 22) =   (1) ⇒ 2 + 2 0 + (2 · 2 0 + 2 · 2) = 0 ⇒ 2 0 + 22 0 = −2 − 22 ⇒ 2(1 + 2)0 = −2(1 + 2) ⇒ 0 = −(1 + 2) (1 + 2). For  = −1, 0 = −(1 − 2) (1 − 2) = − (1 + )(1 − ) (1 + )(1 − ), so 0 = 0 when  = ±1 or  = 0 (which leads to  = ±1) and 0 is undefined when  = ±1 or  = 0 (which leads to  = ±1). Since the graph consists of the lines  = ±1 and  = ±1, the slope at any point on the graph is undefined or 0, which is consistent with the expression found for 0. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.226 ¤ CHAPTER 3 DIFFERENTIATION RULES 3.6 Derivatives of Logarithmic Functions 1. The differentiation formula for logarithmic functions,   (log ) =  ln 1 , is simplest when  =  because ln  = 1. 2. () =  ln  −  ⇒  0() =  · 1  + (ln ) · 1 − 1 = 1 + ln  − 1 = ln  3. () = sin(ln ) ⇒  0() = cos(ln ) ·   ln  = cos(ln ) · 1 = cos(ln  ) 4. () = ln(sin2 ) = ln(sin )2 = 2 ln |sin | ⇒  0() = 2 · 1 sin  · cos  = 2 cot  5. () = ln 1  ⇒  0() = 1 1   1  = −12  = −1 . Another solution: () = ln 1  = ln 1 − ln  = − ln  ⇒  0() = −1  . 6.  = 1 ln  = (ln )−1 ⇒ 0 = −1(ln )−2 · 1 = (ln −1)2 7. () = log10 (1 + cos ) ⇒  0() = 1 (1 + cos ) ln 10   (1 + cos ) = (1 + cos − sin) ln 10  8. () = log10 √ ⇒  0() = √ 1ln 10   √ = √ 1ln 10 2√1 = 2(ln 10) 1  Or: () = log10 √ = log10 12 = 1 2 log10  ⇒  0() = 1 2 1  ln 10 = 1 2 (ln 10)  9. () = ln(−2) = ln  + ln −2 = ln  − 2 ⇒ 0() = 1  − 2 10. () = √1 + ln  ⇒ 0() = 1 2(1 + ln )−12   (1 + ln ) = 2√1 + ln 1  · 1 = 2√1 + ln 1  11. () = (ln )2 sin  ⇒  0() = (ln )2 cos  + sin  · 2 ln  · 1  = ln  ln  cos  + 2 sin   12. () = ln + √2 − 1  ⇒ 0() = 1  + √2 − 1 1 + √2− 1 =  + √12 − 1 · √√2−2 −1 +1  = √21− 1 13. () = ln (2 + 1) 2 + 15 = ln(2 + 1)5 − ln(2 + 1)12 = 5 ln(2 + 1) − 1 2 ln(2 + 1) ⇒ 0() = 5 · 1 2 + 1 · 2 − 1 2 · 1 2 + 1 · 2 = 210 + 1 − 2 + 1 or (28+ 1)( 2 − + 10 2 + 1) 14. () = ln  1 −  ⇒  0() = (1 − )(1) − (ln )(−1) (1 − )2 ·   = 1 −  +  ln  (1 − )2 15. () = ln ln  ⇒  0() = 1 ln    ln  = ln1 · 1 =  ln 1  °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.6 DERIVATIVES OF LOGARITHMIC FUNCTIONS ¤ 227 16.  = ln 1 +  − 3  ⇒ 0 = 1 1 +  − 3   (1 +  − 3) = 1 + 1 − 3−23 17. () = 2 log2  ⇒  0() = 2 1  ln 2 + log2  · 2 ln 2 = 2  ln 2 1 + log2  (ln 2). Note that log2  (ln 2) = ln  ln 2 (ln 2) = ln  by the change of base theorem. Thus,  0() = 2  ln 2 1 + ln . 18.  = ln(csc  − cot ) ⇒ 0 = 1 csc  − cot    (csc  − cot ) = csc  −1 cot (− csc  cot  + csc2 ) = csccsc (csc  − cot − cot  ) = csc  19.  = ln(− + −) = ln(−(1 + )) = ln(−) + ln(1 + ) = − + ln(1 + ) ⇒ 0 = −1 + 1 1 +  = −1 −  + 1 1 +  = −  1 +  20. () = ln  2 2 − +  2 2 = ln 2 2 − +  2 2 12 = 12 ln 2 2 − +  2 2  = 1 2 ln(2 − 2) − 1 2 ln(2 + 2) ⇒ 0() = 1 2 · 1 2 − 2 · (−2) − 21 · 2 +1 2 · (2) = 2 − 2 − 2 + 2 = ((22+−2)2− )(2(+2 −2)2) = 3 + 2 − 3 + 2 (2 − 2)(2 + 2) = 22 4 − 4 21.  = tan [ln( + )] ⇒ 0 = sec2[ln( + )] · 1  +  ·  = sec2[ln( + )] +  22.  = log2( log5 ) ⇒ 0 = 1 ( log5 )(ln 2)   ( log5 ) = ( log51)(ln 2)  ·  ln 5 1 + log5  = ( log5 )(ln 5)(ln 2) 1 + (ln 2) 1 . Note that log5 (ln 5) = ln  ln 5 (ln 5) = ln  by the change of base theorem. Thus, 0 =  ln 1  ln 2 +  ln 2 1 = 1 + ln ln ln 2  . 23.  = √ ln  ⇒ 0 = √ · 1  + (ln ) 1 2√ = 2 + ln  2√ ⇒ 00 = 2√ (1) − (2 + ln )(1√ ) (2√ )2 = 2√ − (2 + ln )(1√ ) 4 = 2 − (2 + ln ) √(4) = − ln 4√ 24.  = ln  1 + ln  ⇒ 0 = (1 + ln )(1 (1 + ln ) −)(ln 2 )(1) = (1 + ln 1 )2 ⇒ 00 = −  [(1 + ln )2] [(1 + ln )2]2 [Reciprocal Rule] = − · 2(1 + ln2)(1 + ln · (1) + (1 + ln )4 )2 = − (1 + ln )[2 + (1 + ln )] 2(1 + ln )4 = − 3 + ln  2(1 + ln )3 25.  = ln|sec | ⇒ 0 = 1 sec    sec  = 1 sec  sec  tan  = tan  ⇒ 00 = sec2  °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.228 ¤ CHAPTER 3 DIFFERENTIATION RULES 26.  = ln(1 + ln ) ⇒ 0 = 1 1 + ln  · 1  = 1 (1 + ln ) ⇒ 00 = −  [(1 + ln)] [(1 + ln )]2 [Reciprocal Rule] = −(1) + (1 + ln 2(1 + ln )2)(1) = −1 + 1 + ln 2(1 + ln )2 = −2(1 + ln 2 + ln )2 27. () =  1 − ln( − 1) ⇒  0() = [1 − ln( − 1)] · 1 −  · −1  − 1 [1 − ln( − 1)]2 = ( − 1)[1 − ln( − 1)] +   − 1 [1 − ln( − 1)]2 =  − 1 − ( − 1) ln( − 1) +  ( − 1)[1 − ln( − 1)]2 = 2 − 1 − ( − 1) ln( − 1) ( − 1)[1 − ln( − 1)]2 Dom() = { |  − 1  0 and 1 − ln( − 1) 6= 0} = { |   1 and ln( − 1) 6= 1} =  |   1 and  − 1 6= 1 = { |   1 and  6= 1 + } = (1 1 + ) ∪ (1 +  ∞) 28. () = √2 + ln  = (2 + ln )12 ⇒  0() = 1 2 (2 + ln )−12 · 1  = 1 2√2 + ln  Dom() = { | 2 + ln  ≥ 0} = { | ln  ≥ −2} = { |  ≥ −2} = [−2 ∞). 29. () = ln(2 − 2) ⇒  0() = 1 2 − 2(2 − 2) = 2(( −− 1) 2). Dom() = { | ( − 2)  0} = (−∞ 0) ∪ (2 ∞). 30. () = ln ln ln  ⇒  0() = 1 ln ln · 1 ln  · 1  . Dom() = { | ln ln   0} = { | ln   1} = { |   } = ( ∞). 31. () = ln( + ln ) ⇒  0() = 1  + ln    ( + ln ) =  + ln 1  1 + 1 . Substitute 1 for  to get  0(1) = 1 1 + ln 1 1 + 11 = 1 + 0 1 (1 + 1) = 1 · 2 = 2. 32. () = cos(ln 2) ⇒  0() = − sin(ln 2)   ln 2 = − sin(ln 2)12 (2) = −2 sin(ln  2). Substitute 1 for  to get  0(1) = −2 sin(ln 12) 1 = −2 sin 0 = 0. 33.  = ln(2 − 3 + 1) ⇒ 0 = 1 2 − 3 + 1 · (2 − 3) ⇒ 0(3) = 1 1 · 3 = 3, so an equation of a tangent line at (3 0) is  − 0 = 3( − 3), or  = 3 − 9. 34.  = 2 ln  ⇒ 0 = 2 · 1  + (ln )(2) ⇒ 0(1) = 1 + 0 = 1 , so an equation of a tangent line at (1 0) is  − 0 = 1( − 1), or  =  − 1. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.6 DERIVATIVES OF LOGARITHMIC FUNCTIONS ¤ 229 35. () = sin  + ln  ⇒  0() = cos  + 1. This is reasonable, because the graph shows that  increases when  0 is positive, and  0() = 0 when  has a horizontal tangent. 36.  = ln   ⇒ 0 = (1) − ln  2 = 1 − ln  2 . 0(1) = 1 − 0 12 = 1 and 0() = 1 −2 1 = 0 ⇒ equations of tangent lines are  − 0 = 1( − 1) or  =  − 1 and  − 1 = 0( − ) or  = 1. 37. () =  + ln(cos ) ⇒  0() =  + 1 cos  · (− sin ) =  − tan .  0( 4 ) = 6 ⇒  − tan 4 = 6 ⇒  − 1 = 6 ⇒  = 7. 38. () = log(32 − 2) ⇒  0() = 1 (32 − 2) ln  · 6.  0(1) = 3 ⇒ 1 ln  · 6 = 3 ⇒ 2 = ln  ⇒  = 2. 39.  = (2 + 2)2(4 + 4)4 ⇒ ln  = ln[(2 + 2)2(4 + 4)4] ⇒ ln  = 2 ln(2 + 2) + 4 ln(4 + 4) ⇒ 1  0 = 2 · 1 2 + 2 · 2 + 4 · 4 1+ 4 · 43 ⇒ 0 = 24+ 2  + 16 4 + 4 3  ⇒ 0 = (2 + 2)2(4 + 4)424+ 2  + 16 4 + 4 3  40.  = − cos2  2 +  + 1 ⇒ ln  = ln 2−+cos  + 1 2  ⇒ ln  = ln − + ln | cos  |2 − ln(2 +  + 1) = − + 2 ln | cos  | − ln(2 +  + 1) ⇒ 1  0 = −1 + 2 · 1 cos  (− sin ) − 1 2 +  + 1(2 + 1) ⇒ 0 = −1 − 2 tan  − 22+ + 1  + 1 ⇒ 0 = − − cos2  2 +  + 1 1 + 2 tan  + 22+ + 1  + 1 41.  = 4−+ 1 1 ⇒ ln  = ln4−+ 1 1 12 ⇒ ln  = 1 2 ln( − 1) − 1 2 ln(4 + 1) ⇒ 1  0 = 1 2 1  − 1 − 1 2 1 4 + 1 · 43 ⇒ 0 = 2(1− 1) − 42+ 1 3  ⇒ 0 = 4−+ 1 1 21− 2 − 42+ 1 3  42.  = √ 2−( + 1)23 ⇒ ln  = ln122−( + 1)23 ⇒ ln  = 1 2 ln  + (2 − ) + 2 3 ln( + 1) ⇒ 1  0 = 1 2 · 1  + 2 − 1 + 2 3 · 1  + 1 ⇒ 0 = 21 + 2 − 1 + 32+ 3 ⇒ 0 = √ 2−( + 1)23 21 + 2 − 1 + 32+ 3 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.230 ¤ CHAPTER 3 DIFFERENTIATION RULES 43.  =  ⇒ ln  = ln  ⇒ ln  =  ln  ⇒ 0 = (1) + (ln) · 1 ⇒ 0 = (1 + ln ) ⇒ 0 = (1 + ln ) 44.  = cos  ⇒ ln  = ln cos  ⇒ ln  = cos  ln  ⇒ 1  0 = cos  · 1  + ln  · (− sin) ⇒ 0 = cos   − ln  sin  ⇒ 0 = cos  cos   − ln  sin  45.  =  sin  ⇒ ln  = ln  sin  ⇒ ln  = sin ln  ⇒ 0  = (sin ) · 1  + (ln )(cos ) ⇒ 0 = sin + ln  cos  ⇒ 0 =  sin sin + ln  cos  46.  = √  ⇒ ln = ln √  ⇒ ln =  ln 12 ⇒ ln  = 1 2 ln  ⇒ 1  0 = 1 2  · 1  + ln  · 1 2 ⇒ 0 =  1 2 + 1 2 ln  ⇒ 0 = 1 2√ (1 + ln ) 47.  = (cos ) ⇒ ln  = ln(cos ) ⇒ ln  = ln cos  ⇒ 1  0 =  · 1 cos  · (− sin ) + ln cos  · 1 ⇒ 0 = ln cos  − cos sin ⇒ 0 = (cos )(ln cos  −  tan ) 48.  = (sin )ln  ⇒ ln  = ln(sin )ln  ⇒ ln  = ln  · ln sin  ⇒ 1  0 = ln  · 1 sin  · cos  + ln sin  · 1  ⇒ 0 = ln  · cos sin  + ln sin   ⇒ 0 = (sin )ln  ln  cot  + ln sin   49.  = (tan )1 ⇒ ln  = ln(tan )1 ⇒ ln  = 1  ln tan  ⇒ 1  0 = 1  · 1 tan  · sec2  + ln tan  · −12  ⇒ 0 = sec tan 2  − ln tan 2  ⇒ 0 = (tan )1 sec tan 2  − ln tan 2  or 0 = (tan )1 · 1csc  sec  − ln tan   50.  = (ln )cos  ⇒ ln  = cos  ln(ln ) ⇒ 0  = cos  · 1 ln  · 1  + (ln ln )(− sin ) ⇒ 0 = (ln )cos cos ln − sin ln ln  51.  = ln(2 + 2) ⇒ 0 = 1 2 + 2   (2 + 2) ⇒ 0 = 22+ 2 +  2 0 ⇒ 20 + 20 = 2 + 20 ⇒ 20 + 20 − 20 = 2 ⇒ (2 + 2 − 2)0 = 2 ⇒ 0 = 2 2 + 2 − 2 52.  =  ⇒  ln  =  ln  ⇒  · 1  + (ln ) · 0 =  · 1  · 0 + ln  ⇒ 0 ln  −   0 = ln  −   ⇒ 0 = ln  −  ln  −  °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES ¤ 231 53. () = ln( − 1) ⇒  0() = 1 ( − 1) = ( − 1)−1 ⇒  00() = −( − 1)−2 ⇒  000 () = 2( − 1)−3 ⇒  (4)() = −2 · 3( − 1)−4 ⇒ · · · ⇒  ()() = (−1)−1 · 2 · 3 · 4 · · · · · ( − 1)( − 1)− = (−1)−1 ( − 1)! ( − 1) 54.  = 8 ln , so 9 = 80 = 8(87 ln  + 7). But the eighth derivative of 7 is 0, so we now have 8(87 ln ) = 7(8 · 76 ln  + 86) = 7(8 · 76 ln ) = 6(8 · 7 · 65 ln ) = · · · = (8! 0 ln ) = 8! 55. If () = ln (1 + ), then  0() = 1 1 +  , so  0(0) = 1. Thus, lim →0 ln(1 + )  = lim →0 ()  = lim →0 () − (0)  − 0 =  0(0) = 1. 56. Let  = . Then  = , and as  → ∞,  → ∞. Therefore, lim →∞ 1 +  = lim →∞ 1 + 1  = lim →∞ 1 + 1  =  by Equation 6. 3.7 Rates of Change in the Natural and Social Sciences 1. (a)  = () = 3 − 82 + 24 (in feet) ⇒ () =  0() = 32 − 16 + 24 (in fts) (b) (1) = 3(1)2 − 16(1) + 24 = 11 fts (c) The particle is at rest when () = 0. 32 − 16 + 24 = 0 ⇒ −(−16) ± (−16)2 − 4(3)(24) 2(3) = 16 ± √−32 6 . The negative discriminant indicates that  is never 0 and that the particle never rests. (d) From parts (b) and (c), we see that ()  0 for all , so the particle is always moving in the positive direction. (e) The total distance traveled during the first 6 seconds (since the particle doesn’t change direction) is (6) − (0) = 72 − 0 = 72 ft. (f ) (g) () = 32 − 16 + 24 ⇒ () = 0() = 6 − 16 (in (fts)s or fts2). (1) = 6(1) − 16 = −10 fts2 (h) (i) The particle is speeding up when  and  have the same sign.  is always positive and  is positive when 6 − 16  0 ⇒   8 3, so the particle is speeding up when   8 3. It is slowing down when  and  have opposite signs; that is, when 0 ≤   8 3. 2. (a)  = () = 9 2 + 9 (in feet) ⇒ () =  0() = (2 + 9)(9) (2 + 9) −29(2) = −(922+ 9) + 81 2 = −(9( 2+ 9) 2 − 9) 2 (in fts) (b) (1) = −9(1 − 9) (1 + 9)2 = 72 100 = 072 fts °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.232 ¤ CHAPTER 3 DIFFERENTIATION RULES (c) The particle is at rest when () = 0. −9(2 − 9) (2 + 9)2 = 0 ⇔ 2 − 9 = 0 ⇒  = 3 s [since  ≥ 0]. (d) The particle is moving in the positive direction when ()  0. −9(2 − 9) (2 + 9)2  0 ⇒ −9(2 − 9)  0 ⇒ 2 − 9  0 ⇒ 2  9 ⇒ 0 ≤   3. (e) Since the particle is moving in the positve direction and in the negative direction, we need to calculate the distance traveled in the intervals [0 3] and[3 6], respectively. |(3) − (0)| =   27 18 − 0  = 3 2 |(6) − (3)| =   54 45 − 27 18  = 10 3 The total distance is 3 2 + 10 3 = 9 5 or 18 ft. (f ) (g) () = −9 2 − 9 (2 + 9)2 ⇒ () = 0() = −9 (2 + 9)2(2) − (2 − 9)2(2 + 9)(2) [(2 + 9)2]2 = −9 2(2 + 9)[((22+ 9) + 9)4− 2(2 − 9)] = 18((22+ 9) − 27) 3 . (1) = 18(−26) 103 = −0468 fts2 (h) (i) The particle is speeding up when  and  have the same sign.  is negative for 0    √27 [≈ 52], so from the figure in part (h), we see that  and  are both negative for 3    3√3. The particle is slowing down when  and  have opposite signs. This occurs when 0    3 and when   3√3. 3. (a)  = () = sin(2) (in feet) ⇒ () =  0() = cos(2) · (2) = 2 cos(2) (in fts) (b) (1) = 2 cos 2 = 2 (0) = 0 fts (c) The particle is at rest when () = 0. 2 cos 2  = 0 ⇔ cos 2  = 0 ⇔ 2  = 2 +  ⇔  = 1 + 2, where  is a nonnegative integer since  ≥ 0. (d) The particle is moving in the positive direction when ()  0. From part (c), we see that  changes sign at every positive odd integer.  is positive when 0    1, 3    5, 7    9, and so on. (e)  changes sign at  = 1, 3, and 5 in the interval [0 6]. The total distance traveled during the first 6 seconds is |(1) − (0)| + |(3) − (1)| + |(5) − (3)| + |(6) − (5)| = |1 − 0| + |−1 − 1| + |1 − (−1)| + |0 − 1| = 1 + 2 + 2 + 1 = 6 ft °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES ¤ 233 (f ) (g) () = 2 cos(2) ⇒ () = 0() = 2 [− sin(2) · (2)] = (−24) sin(2) fts2 (1) = (−24) sin(2) = −24 fts2 (h) (i) The particle is speeding up when  and  have the same sign. From the figure in part (h), we see that  and  are both positive when 3    4 and both negative when 1    2 and 5    6. Thus, the particle is speeding up when 1    2, 3    4, and 5    6. The particle is slowing down when  and  have opposite signs; that is, when 0    1, 2    3, and 4    5. 4. (a)  = () = 2− (in feet) ⇒ () =  0() = 2(−−) + −(2) = −(− + 2) (in fts) (b) (1) = (1)−1(−1 + 2) = 1 fts (c) The particle is at rest when () = 0. () = 0 ⇔  = 0 or 2 s. (d) The particle is moving in the positive direction when ()  0 ⇔ −(− + 2)  0 ⇔ (− + 2)  0 ⇔ 0    2. (e)  changes sign at  = 2 in the interval [0 6]. The total distance traveled during the first 6 seconds is |(2) − (0)| + |(6) − (2)| =  4−2 − 0  +  36−6 − 4−2  = 4−2 + 4−2 − 36−6 = 8−2 − 36−6 ≈ 099 ft (f ) (g) () = (2 − 2)− ⇒ () = 0() = (2 − 2)(−−) + −(2 − 2) = − −(2 − 2) + (2 − 2) = −(2 − 4 + 2) fts2 (1) = −1(1 − 4 + 2) = −1 fts2 (h) (i) () = 0 ⇔ 2 − 4 + 2 = 0 [− 6= 0] ⇔  = 4 ± √8 2 = 2 ± √2 [≈ 06 and 34]. The particle is speeding up when  and  have the same sign. Using the previous information and the figure in part (h), we see that  and  are both positive when 0    2 − √2 and both negative when 2    2 + √2. The particle is slowing down when  and  have opposite signs. This occurs when 2 − √2    2 and   2 + √2. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.234 ¤ CHAPTER 3 DIFFERENTIATION RULES 5. (a) From the figure, the velocity  is positive on the interval (0 2) and negative on the interval (2 3). The acceleration  is positive (negative) when the slope of the tangent line is positive (negative), so the acceleration is positive on the interval (0 1), and negative on the interval (1 3). The particle is speeding up when  and  have the same sign, that is, on the interval (0 1) when   0 and   0, and on the interval (2 3) when   0 and   0. The particle is slowing down when  and  have opposite signs, that is, on the interval (1 2) when   0 and   0. (b)   0 on (0 3) and   0 on (3 4).   0 on (1 2) and   0 on (0 1) and (2 4). The particle is speeding up on (1 2) [  0,   0] and on (3 4) [  0,   0]. The particle is slowing down on (0 1) and (2 3) [  0,   0]. 6. (a) The velocity  is positive when  is increasing, that is, on the intervals (0 1) and (3 4); and it is negative when  is decreasing, that is, on the interval (1 3). The acceleration  is positive when the graph of  is concave upward ( is increasing), that is, on the interval (2 4); and it is negative when the graph of  is concave downward ( is decreasing), that is, on the interval (0 2). The particle is speeding up on the interval (1 2) [  0,   0] and on (3 4) [  0,   0]. The particle is slowing down on the interval (0 1) [  0,   0] and on (2 3) [  0,   0]. (b) The velocity  is positive on (3 4) and negative on (0 3). The acceleration  is positive on (0 1) and (2 4) and negative on (1 2). The particle is speeding up on the interval (1 2) [  0,   0] and on (3 4) [  0,   0]. The particle is slowing down on the interval (0 1) [  0,   0] and on (2 3) [  0,   0]. 7. (a) () = 2 + 245 − 492 ⇒ () = 0() = 245 − 98. The velocity after 2 s is (2) = 245 − 98(2) = 49 ms and after 4 s is (4) = 245 − 98(4) = −147 ms. (b) The projectile reaches its maximum height when the velocity is zero. () = 0 ⇔ 245 − 98 = 0 ⇔  = 245 98 = 25 s. (c) The maximum height occurs when  = 25. (25) = 2 + 245(25) − 49(25)2 = 32625 m or 32 5 8 m. (d) The projectile hits the ground when  = 0 ⇔ 2 + 245 − 492 = 0 ⇔  = −245 ± 2452 − 4(−49)(2) 2(−49) ⇒  =  ≈ 508 s [since  ≥ 0] (e) The projectile hits the ground when  = . Its velocity is () = 245 − 98 ≈ −253 ms [downward]. 8. (a) At maximum height the velocity of the ball is 0 fts. () = 0() = 80 − 32 = 0 ⇔ 32 = 80 ⇔  = 5 2. So the maximum height is  5 2 = 80 5 2 − 16 5 22 = 200 − 100 = 100 ft. (b) () = 80 − 162 = 96 ⇔ 162 − 80 + 96 = 0 ⇔ 16(2 − 5 + 6) = 0 ⇔ 16( − 3)( − 2) = 0. So the ball has a height of 96 ft on the way up at  = 2 and on the way down at  = 3. At these times the velocities are (2) = 80 − 32(2) = 16 fts and (3) = 80 − 32(3) = −16 fts, respectively. 9. (a) () = 15 − 1862 ⇒ () = 0() = 15 − 372. The velocity after 2 s is (2) = 15 − 372(2) = 756 ms. (b) 25 =  ⇔ 1862 − 15 + 25 = 0 ⇔  = 15 ± 152 − 4(186)(25) 2(186) ⇔  = 1 ≈ 235 or  = 2 ≈ 571. The velocities are (1) = 15 − 3721 ≈ 624 ms [upward] and (2) = 15 − 3722 ≈ −624 ms [downward]. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES ¤ 235 10. (a) () = 4 − 43 − 202 + 20 ⇒ () = 0() = 43 − 122 − 40 + 20.  = 20 ⇔ 43 − 122 − 40 + 20 = 20 ⇔ 43 − 122 − 40 = 0 ⇔ 4(2 − 3 − 10) = 0 ⇔ 4( − 5)( + 2) = 0 ⇔  = 0 s or 5 s [for  ≥ 0]. (b) () = 0() = 122 − 24 − 40.  = 0 ⇔ 122 − 24 − 40 = 0 ⇔ 4(32 − 6 − 10) = 0 ⇔  = 6 ± 62 − 4(3)(−10) 2(3) = 1 ± 1 3√39 ≈ 308 s [for  ≥ 0]. At this time, the acceleration changes from negative to positive and the velocity attains its minimum value. 11. (a) () = 2 ⇒ 0() = 2. 0(15) = 30 mm2mm is the rate at which the area is increasing with respect to the side length as  reaches 15 mm. (b) The perimeter is () = 4, so 0() = 2 = 1 2(4) = 1 2(). The figure suggests that if ∆ is small, then the change in the area of the square is approximately half of its perimeter (2 of the 4 sides) times ∆. From the figure, ∆ = 2 (∆) + (∆)2. If ∆ is small, then ∆ ≈ 2 (∆) and so ∆∆ ≈ 2. 12. (a)  () = 3 ⇒   = 32.      =3 = 3(3)2 = 27 mm3mm is the rate at which the volume is increasing as  increases past 3 mm. (b) The surface area is () = 62, so  0() = 32 = 1 2(62) = 1 2(). The figure suggests that if ∆ is small, then the change in the volume of the cube is approximately half of its surface area (the area of 3 of the 6 faces) times ∆. From the figure, ∆ = 32(∆) + 3(∆)2 + (∆)3. If ∆ is small, then ∆ ≈ 32(∆) and so ∆∆ ≈ 32. 13. (a) Using () = 2, we find that the average rate of change is: (i) (3) − (2) 3 − 2 = 9 − 4 1 = 5 (ii) (25) − (2) 25 − 2 = 625 − 4 05 = 45 (iii) (21) − (2) 21 − 2 = 441 − 4 01 = 41 (b) () = 2 ⇒ 0() = 2, so 0(2) = 4. (c) The circumference is () = 2 = 0(). The figure suggests that if ∆ is small, then the change in the area of the circle (a ring around the outside) is approximately equal to its circumference times ∆. Straightening out this ring gives us a shape that is approximately rectangular with length 2 and width ∆, so ∆ ≈ 2(∆). Algebraically, ∆ = ( + ∆) − () = ( + ∆)2 − 2 = 2(∆) + (∆)2. So we see that if ∆ is small, then ∆ ≈ 2(∆) and therefore, ∆∆ ≈ 2. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.236 ¤ CHAPTER 3 DIFFERENTIATION RULES 14. After  seconds the radius is  = 60, so the area is () = (60)2 = 36002 ⇒ 0() = 7200 ⇒ (a) 0(1) = 7200 cm2s (b) 0(3) = 21 600 cm2s (c) 0(5) = 36,000 cm2s As time goes by, the area grows at an increasing rate. In fact, the rate of change is linear with respect to time. 15. () = 42 ⇒ 0() = 8 ⇒ (a) 0(1) = 8 ft2ft (b) 0(2) = 16 ft2ft (c) 0(3) = 24 ft2ft As the radius increases, the surface area grows at an increasing rate. In fact, the rate of change is linear with respect to the radius. 16. (a) Using  () = 4 33, we find that the average rate of change is: (i)  (8) −  (5) 8 − 5 = 43 (512) − 4 3(125) 3 = 172 m3m (ii)  (6) −  (5) 6 − 5 = 43 (216) − 4 3(125) 1 = 1213 m3m (iii)  (51) −  (5) 51 − 5 = 43 (51)3 − 4 3(5)3 01 = 102013 m3m (b)  0() = 42, so  0(5) = 100 m3m. (c)  () = 4 33 ⇒  0() = 42 = (). By analogy with Exercise 13(c), we can say that the change in the volume of the spherical shell, ∆ , is approximately equal to its thickness, ∆, times the surface area of the inner sphere. Thus, ∆ ≈ 42(∆) and so ∆∆ ≈ 42. 17. The mass is () = 32, so the linear density at  is () =  0() = 6. (a) (1) = 6 kgm (b) (2) = 12 kgm (c) (3) = 18 kgm Since  is an increasing function, the density will be the highest at the right end of the rod and lowest at the left end. 18. () = 50001 − 40 1 2 ⇒  0() = 5000 · 21 − 40 1 − 40 1  = −2501 − 40 1  (a)  0(5) = −2501 − 40 5  = −21875 galmin (b)  0(10) = −2501 − 10 40 = −1875 galmin (c)  0(20) = −2501 − 20 40 = −125 galmin (d)  0(40) = −2501 − 40 40 = 0 galmin The water is flowing out the fastest at the beginning— when  = 0,  0() = −250 galmin. The water is flowing out the slowest at the end— when  = 40,  0() = 0. As the tank empties, the water flows out more slowly. 19. The quantity of charge is () = 3 − 22 + 6 + 2, so the current is 0() = 32 − 4 + 6. (a) 0(05) = 3(05)2 − 4(05) + 6 = 475 A (b) 0(1) = 3(1)2 − 4(1) + 6 = 5 A The current is lowest when 0 has a minimum. 00() = 6 − 4  0 when   2 3. So the current decreases when   2 3 and increases when   2 3. Thus, the current is lowest at  = 2 3 s. 20. (a)  =  2 = ()−2 ⇒   = −2()−3 = −2 3 , which is the rate of change of the force with respect to the distance between the bodies. The minus sign indicates that as the distance  between the bodies increases, the magnitude of the force  exerted by the body of mass  on the body of mass  is decreasing. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES ¤ 237 (b) Given  0(20,000) = −2, find  0(10,000). −2 = −2 20,0003 ⇒  = 20,0003.  0(10 000) = −2(20,0003) 10,0003 = −2 · 23 = −16 Nkm 21. With  = 01 − 22 −12,  =   () =    () +    () = 01 − 22 −12 ·  +  · 0−12 1 − 22 −32 −22    () = 01 − 22 −32 · 1 − 22  + 22  = (1 − 20 2)32 Note that we factored out (1 − 22)−32 since −32 was the lesser exponent. Also note that   () = . 22. (a) () = 7 + 5 cos[0503( − 675)] ⇒ 0() = −5 sin[0503( − 675)](0503) = −2515 sin[0503( − 675)]. At 3:00 AM,  = 3, and 0(3) = −2515 sin[0503(−375)] ≈ 239 mh (rising). (b) At 6:00 AM,  = 6, and 0(6) = −2515 sin[0503(−075)] ≈ 093 mh (rising). (c) At 9:00 AM,  = 9, and 0(9) = −2515 sin[0503(225)] ≈ −228 mh (falling). (d) At noon,  = 12, and 0(12) = −2515 sin[0503(525)] ≈ −121 mh (falling). 23. (a) To find the rate of change of volume with respect to pressure, we first solve for  in terms of .   =  ⇒  =   ⇒   = −  2 . (b) From the formula for  in part (a), we see that as  increases, the absolute value of  decreases. Thus, the volume is decreasing more rapidly at the beginning. (c)  = − 1    = − 1  −2  = ( ) =   = 1 24. (a) [C] = 2  + 1 ⇒ rate of reaction =  [C] = ( + 1)( ( 2+ 1) ) − (22)() = 2(( + 1 + 1) −2) = ( 2+ 1)  2 (b) If  = [C], then  −  =  − 2  + 1 = 2 +  − 2  + 1 =   + 1. So ( − )2 = + 12 = ( 2+ 1)  2 =  [C] [from part (a)] =   . (c) As  → ∞, [C] = 2  + 1 = (2) ( + 1) = 2  + (1) → 2  =  molesL. (d) As  → ∞, [C]  = 2 ( + 1)2 → 0. (e) As  increases, nearly all of the reactants A and B are converted into product C. In practical terms, the reaction virtually stops. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.238 ¤ CHAPTER 3 DIFFERENTIATION RULES 25. In Example 6, the population function was  = 2 0. Since we are tripling instead of doubling and the initial population is 400, the population function is () = 400 · 3. The rate of growth is 0() = 400 · 3 · ln 3, so the rate of growth after 25 hours is 0(25) = 400 · 325 · ln 3 ≈ 6850 bacteriahour 26.  = () =  1 + −07 ⇒ 0 = −(1 + · − 07−(0−70)27) [Reciprocal Rule]. When  = 0,  = 20 and 0 = 12. (0) = 20 ⇒ 20 =  1 +  ⇒  = 20(1 + ).  0(0) = 12 ⇒ 12 = (1 + 07 )2 ⇒ 12 = 07(20)(1 + (1 + )2 ) ⇒ 12 14 =  1 +  ⇒ 6(1 + ) = 7 ⇒ 6 + 6 = 7 ⇒  = 6 and  = 20(1 + 6) = 140. For the long run, we let  increase without bound. lim →∞ () = lim →∞ 140 1 + 6−07 = 140 1 + 6 · 0 = 140, indicating that the yeast population stabilizes at 140 cells. 27. (a) 1920: 1 = 1860 − 1750 1920 − 1910 = 110 10 = 11, 2 = 2070 − 1860 1930 − 1920 = 210 10 = 21, (1 + 2)/ 2 = (11 + 21)2 = 16 millionyear 1980: 1 = 4450 − 3710 1980 − 1970 = 740 10 = 74, 2 = 5280 − 4450 1990 − 1980 = 830 10 = 83, (1 + 2)/ 2 = (74 + 83)2 = 785 millionyear (b) () = 3 + 2 +  +  (in millions of people), where  ≈ −0000 284 900 3,  ≈ 0522 433 122 43,  ≈ −6395 641 396, and  ≈ 1720586 081. (c) () = 3 + 2 +  +  ⇒  0() = 32 + 2 +  (in millions of people per year) (d) 1920 corresponds to  = 20 and  0(20) ≈ 1416 millionyear. 1980 corresponds to  = 80 and  0(80) ≈ 7172 millionyear. These estimates are smaller than the estimates in part (a). (e) () =  (where  = 143653 × 109 and  = 101395) ⇒  0() =  ln  (in millions of people per year) (f )  0(20) ≈ 2625 millionyear [much larger than the estimates in part (a) and (d)].  0(80) ≈ 6028 millionyear [much smaller than the estimates in parts (a) and (d)]. (g)  0(85) ≈ 7624 millionyear and  0(85) ≈ 6461 millionyear. The first estimate is probably more accurate. 28. (a) () = 4 + 3 + 2 +  + , where  ≈ −1199 781 × 10−6,  ≈ 9545 853 × 103,  ≈ −28478 550,  ≈ 37,757105 467, and  ≈ −1877 031 × 107. (b) () = 4 + 3 + 2 +  +  ⇒ 0() = 43 + 32 + 2 + . (c) Part (b) gives 0(1990) ≈ 0106 years of age per year. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.7 RATES OF CHANGE IN THE NATURAL AND SOCIAL SCIENCES ¤ 239 (d) 29. (a) Using  =  4(2 − 2) with  = 001,  = 3,  = 3000, and  = 0027, we have  as a function of : () = 3000 4(0027)3(0012 − 2). (0) = 0925 cms, (0005) = 0694 cms, (001) = 0. (b) () =  4(2 − 2) ⇒ 0() = 4(−2) = −2  . When  = 3,  = 3000, and  = 0027, we have 0() = − 3000 2(0027)3. 0(0) = 0, 0(0005) = −92592 (cms)cm, and 0(001) = −185185 (cms)cm. (c) The velocity is greatest where  = 0 (at the center) and the velocity is changing most where  =  = 001 cm (at the edge). 30. (a) (i)  = 1 2  = 12  −1 ⇒   = − 1 2   −2 = −21 2  (ii)  = 1 2  = 21√  12 ⇒   = 1221√  −12 = 4 √1   (iii)  = 1 2  = √2  −12 ⇒   = −12 √2  −32 = −4 √32 (b) Note: Illustrating tangent lines on the generic figures may help to explain the results. (i)    0 and  is decreasing ⇒  is increasing ⇒ higher note (ii)    0 and  is increasing ⇒  is increasing ⇒ higher note (iii)    0 and  is increasing ⇒  is decreasing ⇒ lower note °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.240 ¤ CHAPTER 3 DIFFERENTIATION RULES 31. (a) () = 2000 + 3 + 0012 + 000023 ⇒ 0() = 0 + 3(1) + 001(2) + 00002(32) = 3 + 002 + 000062 (b) 0(100) = 3 + 002(100) + 00006(100)2 = 3 + 2 + 6 = $11pair. 0(100) is the rate at which the cost is increasing as the 100th pair of jeans is produced. It predicts the (approximate) cost of the 101st pair. (c) The cost of manufacturing the 101st pair of jeans is (101) − (100) = 26110702 − 2600 = 110702 ≈ $1107. This is close to the marginal cost from part (b). 32. (a) () = 84 + 016 − 000062 + 00000033 ⇒ 0() = 016 − 00012 + 00000092, and 0(100) = 016 − 00012(100) + 0000009(100)2 = 013. This is the rate at which the cost is increasing as the 100th item is produced. (b) The actual cost of producing the 101st item is (101) − (100) = 9713030299 − 97 ≈ $013 33. (a) () = ()  ⇒ 0() = 0() − () · 1 2 = 0() − () 2 . 0()  0 ⇒ () is increasing; that is, the average productivity increases as the size of the workforce increases. (b) 0() is greater than the average productivity ⇒ 0()  () ⇒ 0()  ()  ⇒ 0()  () ⇒ 0() − ()  0 ⇒ 0() − () 2  0 ⇒ 0()  0. 34. (a)  =   = (1 + 404)(96−06) − (40 + 2404)(16−06) (1 + 404)2 = 96−06 + 384−02 − 64−06 − 384−02 (1 + 404)2 = − 544−06 (1 + 404)2 (b) At low levels of brightness,  is quite large [(0) = 40] and is quickly decreasing, that is,  is negative with large absolute value. This is to be expected: at low levels of brightness, the eye is more sensitive to slight changes than it is at higher levels of brightness. 35.  = ln3 + √92 2 − 8  = ln3 + √9 2 − 8  − ln 2 ⇒   = 1 3 + √9 2 − 8   3 + √9 2 − 8  − 0 = 3 + 1 2(932+−√89)−21−2(18 8  − 8) = 3 + √992−−48 3 + √9 2 − 8 = 3√9 2 − 8 + 9 − 4 √9 2 − 8 3 + √9 2 − 8 . This derivative represents the rate of change of duration of dialysis required with respect to the initial urea concentration. 36. () = 2√ ⇒  0() = 2 · 1 2()−12 ·  = √ =  .  0() is the rate of change of the wave speed with respect to the reproductive rate. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.8 EXPONENTIAL GROWTH AND DECAY ¤ 241 37.   =  ⇒  =    =   (10)(00821) = 1 0821 (  ). Using the Product Rule, we have   = 1 0821 [() 0() +  () 0()] = 1 0821 [(8)(−015) + (10)(010)] ≈ −02436 Kmin. 38. (a) If  = 0, the population is stable (it is constant). (b)   = 0 ⇒  = 01 −   ⇒ 0 = 1 −  ⇒  = 1 − 0 ⇒  = 1 − 0 . If  = 10,000, 0 = 5% = 005, and  = 4% = 004, then  = 10,0001 − 4 5 = 2000. (c) If  = 005, then  = 10,0001 − 5 5 = 0. There is no stable population. 39. (a) If the populations are stable, then the growth rates are neither positive nor negative; that is,   = 0 and   = 0. (b) “The caribou go extinct” means that the population is zero, or mathematically,  = 0. (c) We have the equations   =  −  and   = − + . Let  =  = 0,  = 005,  = 0001,  = 005, and  = 00001 to obtain 005 − 0001 = 0 (1) and −005 + 00001 = 0 (2). Adding 10 times (2) to (1) eliminates the -terms and gives us 005 − 05 = 0 ⇒  = 10. Substituting  = 10 into (1) results in 005(10) − 0001(10) = 0 ⇔ 05 − 001 2 = 0 ⇔ 50 −  2 = 0 ⇔ (50 − ) = 0 ⇔  = 0 or 50. Since  = 10,  = 0 or 500. Thus, the population pairs ( ) that lead to stable populations are (0 0) and (500 50). So it is possible for the two species to live in harmony. 3.8 Exponential Growth and Decay 1. The relative growth rate is 1    = 07944, so   = 07944 and, by Theorem 2, () = (0)07944 = 207944. Thus, (6) = 207944(6) ≈ 23499 or about 235 members. 2. (a) By Theorem 2, () = (0) = 50. In 20 minutes  1 3 hour, there are 100 cells, so  1 3 = 503 = 100 ⇒ 3 = 2 ⇒ 3 = ln 2 ⇒  = 3 ln 2 = ln(23) = ln 8. (b) () = 50(ln 8) = 50 · 8 (c) (6) = 50 · 86 = 50 · 218 = 13,107,200 cells (d)   =  ⇒  0(6) = (6) = (ln 8)(6) ≈ 27,255,656 cellsh (e) () = 106 ⇔ 50 · 8 = 1,000,000 ⇔ 8 = 20,000 ⇔  ln 8 = ln 20,000 ⇔  = ln 20,000 ln 8 ≈ 476 h 3. (a) By Theorem 2, () = (0) = 100. Now (1) = 100(1) = 420 ⇒  = 420 100 ⇒  = ln 42. So () = 100(ln 42) = 100(42). °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.242 ¤ CHAPTER 3 DIFFERENTIATION RULES (b)  (3) = 100(42)3 = 74088 ≈ 7409 bacteria (c)  =  ⇒  0(3) =  · (3) = (ln 42)100(42)3 [from part (a)] ≈ 10,632 bacteriah (d)  () = 100(42) = 10,000 ⇒ (42) = 100 ⇒  = (ln 100)(ln 42) ≈ 32 hours 4. (a) () = (0) ⇒ (2) = (0)2 = 400 and (6) = (0)6 = 25,600. Dividing these equations, we get 62 = 25,600400 ⇒ 4 = 64 ⇒ 4 = ln 26 = 6 ln 2 ⇒  = 3 2 ln 2 ≈ 10397, about 104% per hour. (b) 400 = (0)2 ⇒ (0) = 4002 ⇒ (0) = 4003 ln 2 = 400 ln 23 = 40023 = 50. (c) () = (0) = 50(32)(ln 2) = 50(ln 2)(32) ⇒ () = 50(2)15 (d) (45) = 50(2)15(45) = 50(2)675 ≈ 5382 bacteria (e)   =  = 32 ln 2(50(2)675) ≈ 5596 bacteriah (f ) () = 50,000 ⇒ 50,000 = 50(2)15 ⇒ 1000 = (2)1.5 ⇒ ln 1000 = 1.5 ln 2 ⇒  = ln 1000 1.5 ln 2 ≈ 6.64 h 5. (a) Let the population (in millions) in the year  be (). Since the initial time is the year 1750, we substitute  − 1750 for  in Theorem 2, so the exponential model gives () = (1750)(−1750). Then (1800) = 980 = 790(1800−1750) ⇒ 980 790 = (50) ⇒ ln 980 790 = 50 ⇒  = 50 1 ln 980 790 ≈ 00043104. So with this model, we have  (1900) = 790(1900−1750) ≈ 1508 million, and (1950) = 790(1950−1750) ≈ 1871 million. Both of these estimates are much too low. (b) In this case, the exponential model gives  () = (1850)(−1850) ⇒ (1900) = 1650 = 1260(1900−1850) ⇒ ln 1650 1260 = (50) ⇒  = 50 1 ln 1650 1260 ≈ 0005393. So with this model, we estimate  (1950) = 1260(1950−1850) ≈ 2161 million. This is still too low, but closer than the estimate of (1950) in part (a). (c) The exponential model gives  () =  (1900)(−1900) ⇒  (1950) = 2560 = 1650(1950−1900) ⇒ ln 2560 1650 = (50) ⇒  = 50 1 ln 2560 1650 ≈ 0008785. With this model, we estimate  (2000) = 1650(2000−1900) ≈ 3972 million. This is much too low. The discrepancy is explained by the fact that the world birth rate (average yearly number of births per person) is about the same as always, whereas the mortality rate (especially the infant mortality rate) is much lower, owing mostly to advances in medical science and to the wars in the first part of the twentieth century. The exponential model assumes, among other things, that the birth and mortality rates will remain constant. 6. (a) Let () be the population (in millions) in the year . Since the initial time is the year 1950, we substitute  − 1950 for  in Theorem 2, and find that the exponential model gives  () = (1950)(−1950) ⇒  (1960) = 100 = 83(1960−1950) ⇒ 100 83 = 10 ⇒  = 10 1 ln 100 83 ≈ 00186. With this model, we estimate  (1980) = 83(1980−1950) = 8330 ≈ 145 million, which is an underestimate of the actual population of 150 million. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.8 EXPONENTIAL GROWTH AND DECAY ¤ 243 (b) As in part (a), () = (1960)(−1960) ⇒ (1980) = 150 = 10020 ⇒ 20 = ln 150 100 ⇒  = 1 20 ln 3 2 ≈ 00203. Thus, (2000) = 10040 = 225 million, which is an overestimate of the actual population of 214 million. (c) As in part (a),  () =  (1980)(−1980) ⇒  (2000) = 214 = 15020 ⇒ 20 = ln 214 150 ⇒  = 1 20 ln 214 150 ≈ 00178. Thus,  (2010) = 15030 ≈ 256, which is an overestimate of the actual population of 243 million. (d)  (2020) = 150(2020−1980) ≈ 305 million. This estimate will probably be an overestimate since this model gave us an overestimate in part (c) — indicating that  is too large. Creating a model with more recent data would likely result in an improved estimate. 7. (a) If  = [N2O5] then by Theorem 2,   = −00005 ⇒ () = (0)−00005 = −00005. (b) () = −00005 = 09 ⇒ −00005 = 09 ⇒ −00005 = ln 09 ⇒  = −2000 ln 09 ≈ 211 s 8. (a) The mass remaining after  days is () = (0)  = 50. Since the half-life is 28 days, (28) = 5028 = 25 ⇒ 28 = 1 2 ⇒ 28 = ln 1 2 ⇒  = −(ln 2)28, so () = 50−(ln 2)28 = 50 · 2−28. (b) (40) = 50 · 2−4028 ≈ 186 mg (d) (c) () = 2 ⇒ 2 = 50 · 2−28 ⇒ 50 2 = 2−28 ⇒ (−28) ln 2 = ln 25 1 ⇒  = −28 ln 25 1   ln 2 ≈ 130 days 9. (a) If () is the mass (in mg) remaining after  years, then () = (0) = 100. (30) = 10030 = 1 2(100) ⇒ 30 = 1 2 ⇒  = −(ln 2)30 ⇒ () = 100−(ln 2)30 = 100 · 2−30 (b) (100) = 100 · 2−10030 ≈ 992 mg (c) 100−(ln 2)30 = 1 ⇒ −(ln 2)30 = ln 100 1 ⇒  = −30 ln 0 ln 2 01 ≈ 1993 years 10. (a) If () is the mass after  days and (0) = , then () = . (1) =  = 0945 ⇒  = 0945 ⇒  = ln 0945. Then (ln 0945) = 1 2 ⇔ ln (ln 0945) = ln 1 2 ⇔ (ln 0945) = ln 1 2 ⇔  = − ln 0 ln 2 945 ≈ 1225 years. (b) (ln 0945) = 020 ⇔ (ln 0945) = ln 1 5 ⇔  = − ln 0 ln 5 945 ≈ 2845 years 11. Let () be the level of radioactivity. Thus, () = (0)− and  is determined by using the half-life: (5730) = 1 2 (0) ⇒ (0)−(5730) = 1 2(0) ⇒ −5730 = 1 2 ⇒ −5730 = ln 1 2 ⇒  = − ln 1 2 5730 = ln 2 5730. If 74% of the 14C remains, then we know that () = 074(0) ⇒ 074 = −(ln 2)5730 ⇒ ln 074 = − ln 2 5730 ⇒  = − 5730(ln 074) ln 2 ≈ 2489 ≈ 2500 years. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.244 ¤ CHAPTER 3 DIFFERENTIATION RULES 12. From Exercise 11, we have the model () = (0)− with  = (ln 2)5730. Thus, (68,000,000) = (0)−68000000 ≈ (0) · 0 = 0. There would be an undetectable amount of 14C remaining for a 68-million-year-old dinosaur. Now let () = 01% (0), so 0001(0) = (0)− ⇒ 0001 = − ⇒ ln 0001 = − ⇒  = ln 0001 − = ln 0001 −(ln 2)5730 ≈ 57,104, which is the maximum age of a fossil that we could date using 14C. 13. Let  measure time since a dinosaur died in millions of years, and let () be the amount of 40K in the dinosaur’s bones at time . Then () = (0)− and  is determined by the half-life: (1250) = 1 2(0) ⇒ (0)−(1250) = 1 2(0) ⇒ −1250 = 1 2 ⇒ −1250 = ln 1 2 ⇒  = − ln 1 2 1250 = ln 2 1250 . To determine if a dinosaur dating of 68 million years is possible, we find that (68) = (0)−(68) ≈ 0963(0), indicating that about 96% of the 40K is remaining, which is clearly detectable. To determine the maximum age of a fossil by using 40K, we solve () = 01%(0) for . (0)− = 0001(0) ⇔ − = 0001 ⇔ − = ln 0001 ⇔  = ln 0001 −(ln 2)1250 ≈ 12,457 million, or 12457 billion years. 14. From the information given, we know that   = 2 ⇒  = 2 by Theorem 2. To calculate  we use the point (0 5): 5 = 2(0) ⇒  = 5. Thus, the equation of the curve is  = 52. 15. (a) Using Newton’s Law of Cooling,   = ( − ), we have   = ( − 75). Now let  =  − 75, so (0) =  (0) − 75 = 185 − 75 = 110, so  is a solution of the initial-value problem  =  with (0) = 110 and by Theorem 2 we have () = (0) = 110. (30) = 11030 = 150 − 75 ⇒ 30 = 110 75 = 15 22 ⇒  = 30 1 ln 15 22, so () = 110 30 1  ln( 15 22) and (45) = 110 45 30 ln( 15 22) ≈ 62◦F. Thus,  (45) ≈ 62 + 75 = 137◦F. (b)  () = 100 ⇒ () = 25. () = 110 30 1  ln( 15 22) = 25 ⇒  30 1  ln( 15 22) = 110 25 ⇒ 30 1  ln 15 22 = ln 110 25 ⇒  = 30 ln 25 110 ln 15 22 ≈ 116 min. 16. Let  () be the temperature of the body  hours after 1:30 PM. Then  (0) = 325 and  (1) = 303. Using Newton’s Law of Cooling,   = ( − ), we have   = ( − 20). Now let  =  − 20, so (0) =  (0) − 20 = 325 − 20 = 125, so  is a solution to the initial value problem  =  with (0) = 125 and by Theorem 2 we have () = (0) = 125. (1) = 303 − 20 ⇒ 103 = 125(1) ⇒  = 10 12.53 ⇒  = ln 10 12.53. The murder occurred when °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.8 EXPONENTIAL GROWTH AND DECAY ¤ 245 () = 37 − 20 ⇒ 12.5 = 17 ⇒  = 12 17.5 ⇒  = ln 12 17.5 ⇒  = ln 12 17.5  ln 10 12.53 ≈ −1588 h ≈ −95 minutes. Thus, the murder took place about 95 minutes before 1:30 PM, or 11:55 AM. 17.   = ( − 20). Letting  =  − 20, we get   = , so () = (0). (0) =  (0) − 20 = 5 − 20 = −15, so (25) = (0)25 = −1525, and (25) =  (25) − 20 = 10 − 20 = −10, so −1525 = −10 ⇒ 25 = 2 3. Thus, 25 = ln 2 3 and  = 25 1 ln 2 3, so () = (0) = −15(125) ln(23). More simply, 25 = 2 3 ⇒  =  2 3125 ⇒  =  2 325 ⇒ () = −15 ·  2 325. (a)  (50) = 20 + (50) = 20 − 15 ·  2 35025 = 20 − 15 ·  2 32 = 20 − 20 3 = 13¯ 3 ◦C (b) 15 =  () = 20 + () = 20 − 15 ·  2 325 ⇒ 15 ·  2 325 = 5 ⇒  2 325 = 1 3 ⇒ (25) ln 2 3 = ln 1 3 ⇒  = 25 ln 1 3ln 2 3 ≈ 6774 min. 18.   = ( − 20). Let  =  − 20. Then   = , so () = (0) (0) =  (0) − 20 = 95 − 20 = 75, so () = 75. When  () = 70,   = −1◦Cmin. Equivalently,   = −1 when () = 50. Thus, −1 =   = () = 50 and 50 = () = 75. The first relation implies  = −150, so the second relation says 50 = 75−50. Thus, −50 = 2 3 ⇒ −50 = ln 2 3 ⇒  = −50 ln 2 3 ≈ 2027 min. 19. (a) Let () be the pressure at altitude . Then  =  ⇒ () =  (0) = 1013.  (1000) = 10131000 = 8714 ⇒ 1000 = ln 87 101 14 3 ⇒  = 1000 1 ln  87 101 14 3 ⇒  () = 1013  1000 1  ln( 87 10114 3), so  (3000) = 10133 ln( 87 101 14 3) ≈ 645 kPa. (b)  (6187) = 1013  6187 1000 ln( 87 101 14 3) ≈ 399 kPa 20. (a) Using  = 01 +   with 0 = 1000,  = 008, and  = 3, we have: (i) Annually:  = 1;  = 10001 + 01081·3 = $125971 (ii) Quarterly:  = 4;  = 10001 + 04084·3 = $126824 (iii) Monthly:  = 12;  = 10001 + 012 0812·3 = $127024 (iv) Weekly:  = 52  = 10001 + 052 0852·3 = $127101 (v) Daily:  = 365;  = 10001 + 0365 08365·3 = $127122 (vi) Hourly:  = 365 · 24;  = 10001 + 365 008 · 24365·24·3 = $127125 (vii) Continuously:  = 1000(008)3 = $127125 (b) 010(3) = $134986, 008(3) = $127125, and 006(3) = $119722. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.246 ¤ CHAPTER 3 DIFFERENTIATION RULES 21. (a) Using  = 01 +   with 0 = 3000,  = 005, and  = 5, we have: (i) Annually:  = 1;  = 30001 + 01051·5 = $382884 (ii) Semiannually:  = 2;  = 30001 + 02052·5 = $384025 (iii) Monthly:  = 12;  = 30001 + 012 0512·5 = $385008 (iv) Weekly:  = 52;  = 30001 + 052 0552·5 = $385161 (v) Daily:  = 365;  = 30001 + 0365 05365·5 = $385201 (vi) Continuously:  = 3000(005)5 = $385208 (b)  = 005 and (0) = 3000. 22. (a) 0006 = 20 ⇔ 006 = 2 ⇔ 006 = ln 2 ⇔  = 50 3 ln 2 ≈ 1155, so the investment will double in about 1155 years. (b) The annual interest rate in  = 0(1 + ) is . From part (a), we have  = 0006. These amounts must be equal, so (1 + ) = 006 ⇒ 1 +  = 006 ⇒  = 006 − 1 ≈ 00618 = 618%, which is the equivalent annual interest rate. APPLIED PROJECT Controlling Red Blood Cell Loss During Surgery 1. Let () be the volume of RBCs (in liters) at time  (in hours). Since the total volume of blood is 5 L, the concentration of RBCs is 5. The patient bleeds 2 L of blood in 4 hours, so   = − 2 4 ·  5 = − 1 10  From Section 3.8, we know that  =  has solution () = (0). In this case, (0) = 45% of 5 = 9 4 and  = − 1 10, so () = 9 4−10. At the end of the operation, the volume of RBCs is (4) = 9 4−04 ≈ 151 L. 2. Let  be the volume of blood that is extracted and replaced with saline solution. Let () be the volume of RBCs with the ANH procedure. Then (0) is 45% of (5 −  ), or 20 9 (5 −  ), and hence () = 20 9 (5 −  )−10. We want (4) ≥ 25% of 5 ⇔ 20 9 (5 −  )−04 ≥ 5 4 ⇔ 5 −  ≥ 25 9 04 ⇔  ≤ 5 − 25 9 04 ≈ 086 L. To maximize the effect of the ANH procedure, the surgeon should remove 086 L of blood and replace it with saline solution. 3. The RBC loss without the ANH procedure is (0) − (4) = 9 4 − 9 4−04 ≈ 074 L. The RBC loss with the ANH procedure is (0) − (4) = 20 9 (5 −  ) − 20 9 (5 −  )−04 = 20 9 (5 −  )(1 − −04). Now let  = 5 − 25 9 04 [from Problem 2] to get (0) − (4) = 20 9 5 − 5 − 25 9 04(1 − 04) = 20 9 · 25 9 04(1 − 04) = 5 4(04 − 1) ≈ 061 L. Thus, the ANH procedure reduces the RBC loss by about 074 − 061 = 013 L (about 44 fluid ounces). °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.9 RELATED RATES ¤ 247 3.9 Related Rates 1.  = 3 ⇒   =     = 32   2. (a)  = 2 ⇒   =     = 2   (b)   = 2   = 2(30 m)(1 ms) = 60 m2s 3. Let  denote the side of a square. The square’s area  is given by  = 2. Differentiating with respect to  gives us   = 2   . When  = 16,  = 4. Substitution 4 for  and 6 for   gives us   = 2(4)(6) = 48 cm2s. 4.  =  ⇒   =  ·   +  ·   = 20(3) + 10(8) = 140 cm2s. 5.  = 2 = (5)2 = 25 ⇒   = 25   ⇒ 3 = 25   ⇒   = 253 mmin. 6.  = 4 33 ⇒   = 4 3 · 32   ⇒   = 4 1 2 · 802(4) = 25,600 mm3s. 7.  = 42 ⇒   = 4 · 2   ⇒   = 4 · 2 · 8 · 2 = 128 cm2min. 8. (a)  = 1 2 sin  ⇒   = 1 2 cos    = 1 2(2)(3)cos 3 (02) = 3 1 2(02) = 03 cm2min. (b)  = 1 2 sin  ⇒   = 1 2  cos    + sin     = 1 2(2)3cos 3 (02) + sin 3 (15) = 3 1 2(02) + 1 2√3  3 2 = 03 + 3 4√3 cm2/min [≈ 16] (c)  = 1 2 sin  ⇒   = 1 2    sin  +    sin  +  cos     [by Exercise 3.2.61(a)] = 12 (25)(3) 1 2√3  + (2)(15) 1 2√3  + (2)(3) 1 2(02) =  15 8 √3 + 3 4√3 + 03 =  21 8 √3 + 03 cm2min [≈ 485] Note how this answer relates to the answer in part (a) [ changing] and part (b) [ and  changing]. 9. (a)  = √2 + 1 and   = 3 ⇒   =     = 1 2(2 + 1)−12 · 2 · 3 = √23+ 1. When  = 4,   = √39 = 1. (b)  = √2 + 1 ⇒ 2 = 2 + 1 ⇒ 2 = 2 − 1 ⇒  = 1 22 − 1 2 and   = 5 ⇒   =     =  · 5 = 5. When  = 12,  = √25 = 5, so   = 5(5) = 25. 10. (a)   (42 + 92) =   (36) ⇒ 8   + 18   = 0 ⇒ 4   + 9   = 0 ⇒ 4(2)   + 932√513 = 0 ⇒ 8   = −2√5 ⇒   = −14√5 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.248 ¤ CHAPTER 3 DIFFERENTIATION RULES (b) 4   + 9   = 0 ⇒ 4(−2)(3) + 932√5   = 0 ⇒ 6√5   = 24 ⇒   = √45 11.   (2 + 2 + 2) =   (9) ⇒ 2   + 2   + 2   = 0 ⇒    +    +    = 0. If   = 5,   = 4 and (  ) = (2 2 1), then 2(5) + 2(4) + 1   = 0 ⇒   = −18. 12.   () =   (8) ⇒    +    = 0. If   = −3 cms and ( ) = (4 2), then 4(−3) + 2   = 0 ⇒   = 6. Thus, the -coordinate is increasing at a rate of 6 cms. 13. (a) Given: a plane flying horizontally at an altitude of 1 mi and a speed of 500 mih passes directly over a radar station. If we let  be time (in hours) and  be the horizontal distance traveled by the plane (in mi), then we are given that  = 500 mih. (b) Unknown: the rate at which the distance from the plane to the station is increasing when it is 2 mi from the station. If we let  be the distance from the plane to the station, then we want to find  when  = 2 mi. (c) (d) By the Pythagorean Theorem, 2 = 2 + 1 ⇒ 2 () = 2 (). (e)   =     =   (500). Since 2 = 2 + 1, when  = 2,  = √3, so   = √3 2 (500) = 250 √3 ≈ 433 mih. 14. (a) Given: the rate of decrease of the surface area is 1 cm2min. If we let  be time (in minutes) and  be the surface area (in cm2), then we are given that  = −1 cm2s. (c) (b) Unknown: the rate of decrease of the diameter when the diameter is 10 cm. If we let  be the diameter, then we want to find  when  = 10 cm. (d) If the radius is  and the diameter  = 2, then  = 1 2 and  = 42 = 4 1 22 = 2 ⇒   =     = 2   . (e) −1 =   = 2   ⇒   = −2 1 . When  = 10,   = −201 . So the rate of decrease is 201 cmmin. 15. (a) Given: a man 6 ft tall walks away from a street light mounted on a 15-ft-tall pole at a rate of 5 fts. If we let  be time (in s) and  be the distance from the pole to the man (in ft), then we are given that  = 5 fts. (b) Unknown: the rate at which the tip of his shadow is moving when he is 40 ft from the pole. If we let  be the distance from the man to the tip of his shadow (in ft), then we want to find  ( + ) when  = 40 ft. (c) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.9 RELATED RATES ¤ 249 (d) By similar triangles, 15 6 =  +   ⇒ 15 = 6 + 6 ⇒ 9 = 6 ⇒  = 2 3. (e) The tip of the shadow moves at a rate of  ( + ) =    + 23 = 53   = 5 3(5) = 25 3 fts. 16. (a) Given: at noon, ship A is 150 km west of ship B; ship A is sailing east at 35 kmh, and ship B is sailing north at 25 kmh. If we let  be time (in hours),  be the distance traveled by ship A (in km), and  be the distance traveled by ship B (in km), then we are given that  = 35 kmh and  = 25 kmh. (b) Unknown: the rate at which the distance between the ships is changing at 4:00 PM. If we let  be the distance between the ships, then we want to find  when  = 4 h. (c) (d) 2 = (150 − )2 + 2 ⇒ 2   = 2(150 − )−   + 2   (e) At 4:00 PM,  = 4(35) = 140 and  = 4(25) = 100 ⇒  = (150 − 140)2 + 1002 = √10,100. So   = 1  ( − 150)   +     = −10(35) + 100(25) √10,100 = √215 101 ≈ 214 kmh. 17. We are given that   = 60 mih and   = 25 mih. 2 = 2 + 2 ⇒ 2   = 2   + 2   ⇒    =    +    ⇒   = 1   +    . After 2 hours,  = 2 (60) = 120 and  = 2 (25) = 50 ⇒  = √1202 + 502 = 130, so   = 1     +     = 120(60) + 50(25) 130 = 65 mih. 18. We are given that   = 16 ms. By similar triangles, 12  = 2 ⇒  = 24  ⇒   = − 24 2   = − 24 2 (16). When  = 8,   = −24(1 646) = −06 ms, so the shadow is decreasing at a rate of 06 ms. 19. We are given that   = 4 fts and   = 5 fts. 2 = ( + )2 + 5002 ⇒ 2   = 2( + )  +   . 15 minutes after the woman starts, we have  = (4 fts)(20 min)(60 smin) = 4800 ft and  = 5 · 15 · 60 = 4500 ⇒  = (4800 + 4500)2 + 5002 = √86,740,000, so   =  +     +    = √4800 + 4500 86,740,000 (4 + 5) = √837 8674 ≈ 899 fts °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.250 ¤ CHAPTER 3 DIFFERENTIATION RULES 20. We are given that   = 24 fts. (a) 2 = (90 − )2 + 902 ⇒ 2   = 2(90 − )−  . When  = 45,  = √452 + 902 = 45 √5, so   = 90 −   −   = 4545 √5 (−24) = −√245, so the distance from second base is decreasing at a rate of √245 ≈ 107 fts. (b) Due to the symmetric nature of the problem in part (a), we expect to get the same answer— and we do. 2 = 2 + 902 ⇒ 2   = 2   . When  = 45,  = 45 √5, so   = 4545 √5(24) = √245 ≈ 107 fts. 21.  = 1 2, where  is the base and  is the altitude. We are given that   = 1 cmmin and   = 2 cm2min. Using the Product Rule, we have   = 1 2    +    . When  = 10 and  = 100, we have 100 = 1 2(10) ⇒ 1 2 = 10 ⇒  = 20, so 2 = 1 220 · 1 + 10    ⇒ 4 = 20 + 10   ⇒   = 4 −1020 = −16 cmmin. 22. Given   = −1 ms, find   when  = 8 m. 2 = 2 + 1 ⇒ 2   = 2   ⇒   =     = −   . When  = 8,  = √65, so   = − √65 8 . Thus, the boat approaches the dock at √65 8 ≈ 101 ms. 23. We are given that   = 35 kmh and   = 25 kmh. 2 = ( + )2 + 1002 ⇒ 2   = 2( + )  +   . At 4:00 PM,  = 4(35) = 140 and  = 4(25) = 100 ⇒  = (140 + 100)2 + 1002 = √67,600 = 260, so   =  +     +    = 140 + 100 260 (35 + 25) = 720 13 ≈ 554 kmh. 24. The distance  of the particle to the origin is given by  = 2 + 2, so 2 = 2 + [2 sin(2)]2 ⇒ 2   = 2   + 4 · 2 sin2  cos2  · 2   ⇒    =    + 2 sin2  cos2    . When ( ) = 13 1,  = 1 32 + 12 = 10 9 = 13 √10, so 13 √10   = 13√10 + 2 sin 6 cos 6 · √10 ⇒ 1 3   = 1 3 + 21212√3 ⇒   = 1 + 3√23  cms. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.9 RELATED RATES ¤ 251 25. If  = the rate at which water is pumped in, then   =  − 10,000, where  = 1 32 is the volume at time . By similar triangles, 2 = 6 ⇒  = 13 ⇒  = 1 3 1 32  = 27  3 ⇒   = 9 2   . When  = 200 cm,   = 20 cmmin, so  − 10,000 = 9 (200)2(20) ⇒  = 10,000 + 8009,000 ≈ 289,253 cm3min. 26. By similar triangles, 3 1 =   , so  = 3. The trough has volume  = 1 2(10) = 5(3) = 152 ⇒ 12 =   = 30   ⇒   = 52. When  = 1 2,   = 2 5 · 1 2 = 4 5 ftmin. 27. The figure is labeled in meters. The area  of a trapezoid is 12 (base1 + base2)(height), and the volume  of the 10-meter-long trough is 10. Thus, the volume of the trapezoid with height  is  = (10) 1 2[03 + (03 + 2)]. By similar triangles,   = 025 05 = 1 2 , so 2 =  ⇒  = 5(06 + ) = 3 + 52. Now   =     ⇒ 02 = (3 + 10)  ⇒   = 3 + 10 02 . When  = 03,   = 02 3 + 10(03) = 02 6 mmin = 1 30 mmin or 10 3 cmmin. 28. The figure is drawn without the top 3 feet.  = 1 2( + 12)(20) = 10( + 12) and, from similar triangles,   = 6 6 and   = 16 6 = 8 3 , so  =  + 12 +  =  + 12 + 8 3 = 12 + 11 3 . Thus,  = 1024 + 113 = 240 + 11032 and so 08 =   = 240 + 220 3   . When  = 5,   = 08 240 + 5(2203) = 3 2275 ≈ 000132 ftmin. 29. We are given that   = 30 ft3min.  = 132 = 132 2  =  123 ⇒   =     ⇒ 30 =  4 2   ⇒   =  1202 . When  = 10 ft,   = 120 102 = 6 5 ≈ 038 ftmin. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.252 ¤ CHAPTER 3 DIFFERENTIATION RULES 30. We are given  = 8 fts. cot  =  100 ⇒  = 100 cot  ⇒   = −100 csc2    ⇒   = −sin 100 2  · 8. When  = 200, sin  = 100 200 = 12 ⇒   = − (12)2 100 · 8 = − 1 50 rads. The angle is decreasing at a rate of 50 1 rads. 31. The area  of an equilateral triangle with side  is given by  = 1 4√3 2.   = 14 √3 · 2   = 14 √3 · 2(30)(10) = 150√3 cm2min. 32. cos  =  10 ⇒ − sin    = 1 10   . From Example 2,   = 1 and when  = 6,  = 8, so sin  = 8 10 . Thus, − 8 10   = 1 10 (1) ⇒   = − 1 8 rads. 33. From the figure and given information, we have 2 + 2 = 2,   = −015 m s, and   = 02 m s when  = 3 m. Differentiating implicitly with respect to , we get 2 + 2 = 2 ⇒ 2  + 2   = 0 ⇒    = −  . Substituting the given information gives us (−015) = −3(02) ⇒  = 4 m. Thus, 32 + 42 = 2 ⇒ 2 = 25 ⇒  = 5 m. 34. According to the model in Example 2,   = −     → −∞ as  → 0, which doesn’t make physical sense. For example, the model predicts that for sufficiently small , the tip of the ladder moves at a speed greater than the speed of light. Therefore the model is not appropriate for small values of . What actually happens is that the tip of the ladder leaves the wall at some point in its descent. For a discussion of the true situation see the article “The Falling Ladder Paradox” by Paul Scholten and Andrew Simoson in The College Mathematics Journal, 27, (1), January 1996, pages 49–54. Also see “On Mathematical and Physical Ladders” by M. Freeman and P. Palffy-Muhoray in the American Journal of Physics, 53 (3), March 1985, pages 276–277. 35. The area  of a sector of a circle with radius  and angle  is given by  = 1 22. Here  is constant and  varies, so   = 1 2 2   . The minute hand rotates through 360◦ = 2 radians each hour, so   = 1 22(2) = 2 cm2h. This answer makes sense because the minute hand sweeps through the full area of a circle, 2, each hour. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.9 RELATED RATES ¤ 253 36. The volume of a hemisphere is 2 33, so the volume of a hemispherical basin of radius 30 cm is 2 3(30)3 = 18,000 cm3. If the basin is half full, then  = 2 − 1 33 ⇒ 9000 = 302 − 1 33 ⇒ 1 33 − 302 + 9000 = 0 ⇒  =  ≈ 1958 [from a graph or numerical rootfinder; the other two solutions are less than 0 and greater than 30].  = 302 − 1 33 ⇒   = 60   − 2    ⇒ 2 min L 1000 cmL 3  = (60 − 2)   ⇒   = 2000 (60 − 2) ≈ 0804 cmmin. 37. Differentiating both sides of   =  with respect to  and using the Product Rule gives us    +    = 0 ⇒   = −     . When  = 600,  = 150 and   = 20, so we have   = −600 150 (20) = −80. Thus, the volume is decreasing at a rate of 80 cm3min. 38.  14 =  ⇒  · 14 04   +  14   = 0 ⇒   = − ·1144 04   = −14   . When  = 400,  = 80 and   = −10, so we have   = −1400 4(80)(−10) = 250 7 . Thus, the volume is increasing at a rate of 250 7 ≈ 36 cm3min. 39. With 1 = 80 and 2 = 100, 1  = 1  1 + 1  2 = 1 80 + 1 100 = 180 8000 = 9 400, so  = 400 9 . Differentiating 1 = 11 + 12 with respect to , we have − 1 2   = − 1  21 1  − 1  22 2  ⇒   = 2112  1 + 122  2 . When 1 = 80 and 2 = 100,   = 4002 92 80 12 (03) + 100 1 2 (02) = 107 810 ≈ 0132 Ωs. 40. We want to find   when  = 18 using  = 0007 23 and  = 012253.   =       = 0007 · 2 3 −13(012 · 253 · 153)1020 ,000 −,15 000 = 0007 · 2 3(012 · 18 253)−13012 · 253 · 1815310 57  ≈ 1045 × 10−8 gyr 41. We are given  = 2◦min = 90  radmin. By the Law of Cosines, 2 = 122 + 152 − 2(12)(15) cos  = 369 − 360 cos  ⇒ 2   = 360 sin    ⇒   = 180 sin     . When  = 60◦,  = √369 − 360 cos 60◦ = √189 = 3 √21, so   = 180 sin 60◦ 3 √21  90 =  √3 3 √21 = √7  21 ≈ 0396 mmin. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.254 ¤ CHAPTER 3 DIFFERENTIATION RULES 42. Using  for the origin, we are given   = −2 fts and need to find   when  = −5. Using the Pythagorean Theorem twice, we have √2 + 122 + 2 + 122 = 39, the total length of the rope. Differentiating with respect to , we get  √2 + 122   +  2 + 122   = 0, so   = − √22 + 12 + 1222   . Now when  = −5, 39 = (−5)2 + 122 + 2 + 122 = 13 + 2 + 122 ⇔ 2 + 122 = 26, and  = √262 − 122 = √532. So when  = −5,   = − (−5)(26) √532 (13)(−2) = −√10 133 ≈ −087 fts. So cart  is moving towards  at about 087 fts. 43. (a) By the Pythagorean Theorem, 40002 + 2 = 2. Differentiating with respect to , we obtain 2   = 2   . We know that   = 600 fts, so when  = 3000 ft,  = √40002 + 30002 = √25,000,000 = 5000 ft and   =     = 3000 5000 (600) = 1800 5 = 360 fts. (b) Here tan  =  4000 ⇒  (tan ) =   4000   ⇒ sec2    = 4000 1   ⇒   = cos 4000 2    . When  = 3000 ft,   = 600 fts,  = 5000 and cos  = 4000  = 4000 5000 = 45, so   = (4 4000 5)2 (600) = 0096 rads. 44. We are given that   = 4(2) = 8 radmin.  = 3 tan  ⇒   = 3 sec2   . When  = 1, tan  = 1 3, so sec2 = 1 +  1 32 = 10 9 and   = 3 10 9 (8) = 80 3  ≈ 838 kmmin. 45. cot  =  5 ⇒ − csc2    = 1 5   ⇒ − csc 3 2−6  = 15   ⇒   = 5 6 √232 = 10 9  kmmin [≈ 130 mih] 46. We are given that   = 2 rad 2 min =  radmin By the Pythagorean Theorem, when  = 6,  = 8, so sin  = 10 6 and cos  = 10 8 . From the figure, sin  =  10 ⇒  = 10 sin , so   = 10 cos    = 1010 8   = 8 mmin. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.9 RELATED RATES ¤ 255 47. We are given that   = 300 kmh. By the Law of Cosines, 2 = 2 + 12 − 2(1)() cos 120◦ = 2 + 1 − 2− 1 2 = 2 +  + 1, so 2   = 2   +   ⇒   = 22+ 1    . After 1 minute,  = 300 60 = 5 km ⇒  = √52 + 5 + 1 = √31 km ⇒   = 2(5) + 1 2 √31 (300) = 1650 √31 ≈ 296 kmh. 48. We are given that   = 3 mih and   = 2 mih. By the Law of Cosines, 2 = 2 + 2 − 2 cos 45◦ = 2 + 2 − √2  ⇒ 2   = 2   + 2   − √2    − √2    . After 15 minutes = 1 4 h, we have  = 3 4 and  = 2 4 = 1 2 ⇒ 2 =  3 42 +  2 42 − √2 3 4 2 4 ⇒  = 13 − 6 √2 4 and   = 2 13 − 6 √2 2 3 43 + 2 1 22 − √2 3 42 − √2 1 23 = 13 −2 6 √2 13 −26 √2 = 13 − 6 √2 ≈ 2125 mih. 49. Let the distance between the runner and the friend be . Then by the Law of Cosines,  2 = 2002 + 1002 − 2 · 200 · 100 · cos  = 50,000 − 40,000 cos  (). Differentiating implicitly with respect to , we obtain 2   = −40,000(− sin )   . Now if  is the distance run when the angle is  radians, then by the formula for the length of an arc on a circle,  = , we have  = 100, so  = 1 100  ⇒   = 1 100   = 7 100 . To substitute into the expression for  , we must know sin  at the time when  = 200, which we find from (): 2002 = 50,000 − 40,000 cos  ⇔ cos  = 1 4 ⇒ sin  = 1 −  1 42 = √415. Substituting, we get 2(200)   = 40,000 √415 100 7  ⇒  = 7 √415 ≈ 678 ms. Whether the distance between them is increasing or decreasing depends on the direction in which the runner is running. 50. The hour hand of a clock goes around once every 12 hours or, in radians per hour, 2 12 = 6 radh. The minute hand goes around once an hour, or at the rate of 2 radh. So the angle  between them (measuring clockwise from the minute hand to the hour hand) is changing at the rate of  = 6 − 2 = − 116 radh. Now, to relate  to , we use the Law of Cosines: 2 = 42 + 82 − 2 · 4 · 8 · cos  = 80 − 64 cos  (). Differentiating implicitly with respect to , we get 2   = −64(− sin )  . At 1:00, the angle between the two hands is °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.256 ¤ CHAPTER 3 DIFFERENTIATION RULES one-twelfth of the circle, that is, 212  = 6 radians. We use () to find  at 1:00:  = 80 − 64 cos 6 = 80 − 32 √3. Substituting, we get 2   = 64 sin 6 −116  ⇒   = 264 80 1 2−−32 116√3 = −3 8088 −32 √3 ≈ −186. So at 1:00, the distance between the tips of the hands is decreasing at a rate of 186 mmh ≈ 0005 mms. 3.10 Linear Approximations and Differentials 1. () = 3 − 2 + 3 ⇒  0() = 32 − 2, so (−2) = −9 and  0(−2) = 16. Thus, () = (−2) +  0(−2)( − (−2)) = −9 + 16( + 2) = 16 + 23. 2. () = sin  ⇒  0() = cos , so  6  = 1 2 and  0 6  = 1 2√3. Thus, () =  6  +  0 6  − 6  = 1 2 + 1 2√3  − 6  = 1 2√3  + 1 2 − 12 1 √3 . 3. () = √ ⇒  0() = 1 2−12 = 1(2√), so (4) = 2 and  0(4) = 1 4. Thus, () = (4) +  0(4)( − 4) = 2 + 1 4( − 4) = 2 + 1 4 − 1 = 1 4 + 1. 4. () = 2 ⇒  0() = 2 ln 2, so (0) = 1 and  0(0) = ln 2. Thus, () = (0) +  0(0)( − 0) = 1 + (ln 2). 5. () = √1 −  ⇒  0() = −1 2 √1 − , so (0) = 1 and  0(0) = − 1 2. Therefore, √1 −  = () ≈ (0) +  0(0)( − 0) = 1 + − 1 2( − 0) = 1 − 1 2. So √09 = √1 − 01 ≈ 1 − 1 2(01) = 095 and √099 = √1 − 001 ≈ 1 − 1 2(001) = 0995. 6. () = √3 1 +  = (1 + )13 ⇒ 0() = 1 3(1 + )−23, so (0) = 1 and 0(0) = 1 3. Therefore, √3 1 +  = () ≈ (0) + 0(0)( − 0) = 1 + 1 3. So √3 095 = 3 1 + (−005) ≈ 1 + 1 3(−005) = 0983, and √3 11 = √3 1 + 01 ≈ 1 + 1 3(01) = 103. 7. () = ln(1 + ) ⇒  0() = 1 1 +  , so (0) = 0 and  0(0) = 1. Thus, () ≈ (0) +  0(0)( − 0) = 0 + 1() = . We need ln(1 + ) − 01    ln(1 + ) + 01, which is true when −0383    0516. 8. () = (1 + )−3 ⇒  0() = −3(1 + )−4, so (0) = 1 and  0(0) = −3. Thus, () ≈ (0) +  0(0)( − 0) = 1 − 3. We need (1 + )−3 − 01  1 − 3  (1 + )−3 + 01, which is true when −0116    0144. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.10 LINEAR APPROXIMATIONS AND DIFFERENTIALS ¤ 257 9. () = √4 1 + 2 ⇒  0() = 1 4(1 + 2)−34(2) = 1 2(1 + 2)−34, so (0) = 1 and  0(0) = 1 2. Thus, () ≈ (0) +  0(0)( − 0) = 1 + 1 2. We need √4 1 + 2 − 01  1 + 1 2  √4 1 + 2 + 01, which is true when −0368    0677. 10. () =  cos  ⇒  0() = (− sin ) + (cos ) = (cos  − sin ), so (0) = 1 and  0(0) = 1. Thus, () ≈ (0) +  0(0)( − 0) = 1 + . We need  cos  − 01  1 +    cos  + 01, which is true when −0762    0607. 11. (a) The differential  is defined in terms of  by the equation  =  0() . For  = () = −4,  0() = −4(−4) + −4 · 1 = −4(−4 + 1), so  = (1 − 4)−4. (b) For  = () = √1 − 4,  0() = 1 2(1 − 4)−12(−43) = −√12−3 4 , so  = −√12−3 4 . 12. (a) For  = () = 1 + 2 1 + 3 ,  0() = (1 + 3)(2) (1 + 3 − (1 + 2 )2 )(3) = (1 + 3 −1)2 , so  = (1 + 3 −1)2 . (b) For  = () = 2 sin 2,  0() = 2(cos 2)(2) + (sin 2)(2), so  = 2( cos 2 + sin 2) . 13. (a) For  = () = tan √,  0() = sec2 √ · 1 2 −12 = sec2 √ 2√ , so  = sec 2√2 √  . (b) For  = () = 1 − 2 1 + 2 ,  0() = (1 + 2)(−2) − (1 − 2)(2) (1 + 2)2 = −2[(1 + 2) + (1 − 2)] (1 + 2)2 = −2(2) (1 + 2)2 = −4 (1 + 2)2 , so  = −4 (1 + 2)2 . 14. (a) For  = () = ln(sin ),  0() = 1 sin  cos  = cot , so  = cot  . (b) For  = () =  1 −  ,  0() = (1 − (1)− −)2(−) = [(1 −(1−)−)2(−)] = (1 −)2 , so  =  (1 − )2 . 15. (a)  = 10 ⇒  = 10 · 10 1  = 10 1 10 (b)  = 0 and  = 01 ⇒  = 10 1 010(01) = 001. 16. (a)  = cos  ⇒  = −sin  ·   = − sin   (b)  = 1 3 and  = −002 ⇒  = − sin 3 (−002) =  √32(002) = 001 √3 ≈ 0054. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.258 ¤ CHAPTER 3 DIFFERENTIATION RULES 17. (a)  = √3 + 2 ⇒  = 1 2 (3 + 2)−12(2)  = √3 +  2  (b)  = 1 and  = −01 ⇒  = √3 + 1 1 2 (−01) = 1 2(−01) = −005. 18. (a)  =  + 1  − 1 ⇒  = ( − 1)(1) − ( + 1)(1) ( − 1)2  = ( −−21)2  (b)  = 2 and  = 005 ⇒  = −2 (2 − 1)2 (005) = −2(005) = −01. 19.  = () = 2 − 4,  = 3, ∆ = 05 ⇒ ∆ = (35) − (3) = −175 − (−3) = 125  =  0()  = (2 − 4)  = (6 − 4)(05) = 1 20.  = () =  − 3,  = 0, ∆ = −03 ⇒ ∆ = (−03) − (0) = −0273 − 0 = −0273  =  0()  = (1 − 32)  = (1 − 0)(−03) = −03 21.  = () = √ − 2,  = 3, ∆ = 08 ⇒ ∆ = (38) − (3) = √18 − 1 ≈ 034  =  0()  = 1 2√ − 2  = 2(1) 1 (08) = 04 22.  = () = ,  = 0, ∆ = 05 ⇒ ∆ = (05) − (0) = √ − 1 [≈ 065]  =   = 0(05) = 05 23. To estimate (1999)4, we’ll find the linearization of () = 4 at  = 2. Since  0() = 43, (2) = 16, and  0(2) = 32, we have () = 16 + 32( − 2). Thus, 4 ≈ 16 + 32( − 2) when  is near 2, so (1999)4 ≈ 16 + 32(1999 − 2) = 16 − 0032 = 15968. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.10 LINEAR APPROXIMATIONS AND DIFFERENTIALS ¤ 259 24.  = () = 1 ⇒  = −12 . When  = 4 and  = 0002,  = − 16 1 (0002) = − 8000 1 , so 1 4002 ≈ (4) +  = 1 4 − 8000 1 = 1999 8000 = 0249875. 25.  = () = √3  ⇒  = 1 3−23 . When  = 1000 and  = 1,  = 1 3(1000)−23(1) = 300 1 , so √3 1001 = (1001) ≈ (1000) +  = 10 + 300 1 = 10003 ≈ 10003. 26.  = () = √ ⇒  = 1 2−12 . When  = 100 and  = 05,  = 1 2(100)−12 1 2 = 40 1 , so √1005 = (1005) ≈ (100) +  = 10 + 40 1 = 10025. 27.  = () =  ⇒  =  . When  = 0 and  = 01,  = 0(01) = 01, so 01 = (01) ≈ (0) +  = 1 + 01 = 11. 28.  = () = cos  ⇒  = −sin  . When  = 30◦ [6] and  = −1◦ [−180],  = − sin 6  − 180   = − 1 2− 180   = 360  , so cos 29◦ = (29◦) ≈ (30◦) +  = 1 2√3 + 360  ≈ 0875. 29.  = () = sec ⇒  0() = sec  tan , so (0) = 1 and  0(0) = 1 · 0 = 0. The linear approximation of  at 0 is (0) +  0(0)( − 0) = 1 + 0() = 1. Since 008 is close to 0, approximating sec 008 with 1 is reasonable. 30.  = () = √ ⇒  0() = 1(2√ ), so (4) = 2 and  0(4) = 1 4. The linear approximation of  at 4 is (4) +  0(4)( − 4) = 2 + 1 4( − 4). Now (402) = √402 ≈ 2 + 1 4(002) = 2 + 0005 = 2005, so the approximation is reasonable. 31.  = () = 1 ⇒  0() = −12, so (10) = 01 and  0(10) = −001. The linear approximation of  at 10 is (10) +  0(10)( − 10) = 01 − 001( − 10). Now (998) = 1998 ≈ 01 − 001(−002) = 01 + 00002 = 01002, so the approximation is reasonable. 32. (a) () = ( − 1)2 ⇒  0() = 2( − 1), so (0) = 1 and  0(0) = −2. Thus, () ≈ () = (0) +  0(0)( − 0) = 1 − 2. () = −2 ⇒ 0() = −2−2, so (0) = 1 and 0(0) = −2. Thus, () ≈ () = (0) + 0(0)( − 0) = 1 − 2. () = 1 + ln(1 − 2) ⇒ 0() = −2 1 − 2 , so (0) = 1 and 0(0) = −2. Thus, () ≈ () = (0) + 0(0)( − 0) = 1 − 2. Notice that  =  = . This happens because , , and  have the same function values and the same derivative values at  = 0. (b) The linear approximation appears to be the best for the function  since it is closer to  for a larger domain than it is to  and . The approximation looks worst for  since  moves away from  faster than  and  do. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.260 ¤ CHAPTER 3 DIFFERENTIATION RULES 33. (a) If  is the edge length, then  = 3 ⇒  = 32 . When  = 30 and  = 01,  = 3(30)2(01) = 270, so the maximum possible error in computing the volume of the cube is about 270 cm3. The relative error is calculated by dividing the change in  , ∆ , by  . We approximate ∆ with  . Relative error = ∆  ≈   = 32  3 = 3   = 3030 1 = 001. Percentage error = relative error × 100% = 001 × 100% = 1%. (b)  = 62 ⇒  = 12 . When  = 30 and  = 01,  = 12(30)(01) = 36, so the maximum possible error in computing the surface area of the cube is about 36 cm2. Relative error = ∆  ≈   = 12  62 = 2   = 2030 1 = 0006. Percentage error = relative error × 100% = 0006 × 100% = 06%. 34. (a)  = 2 ⇒  = 2 . When  = 24 and  = 02,  = 2(24)(02) = 96, so the maximum possible error in the calculated area of the disk is about 96 ≈ 30 cm2. (b) Relative error = ∆  ≈   = 2  2 = 2   = 2(02) 24 = 02 12 = 1 60 = 0016. Percentage error = relative error ×100% = 0016 × 100% = 16%. 35. (a) For a sphere of radius , the circumference is  = 2 and the surface area is  = 42, so  =  2 ⇒  = 42 2 = 2 ⇒  = 2  . When  = 84 and  = 05,  = 2 (84)(05) = 84  , so the maximum error is about 84  ≈ 27 cm2. Relative error ≈   = 84 842 = 1 84 ≈ 0012 = 12% (b)  = 4 3 3 = 4 3 2 3 = 632 ⇒  = 212 2 . When  = 84 and  = 05,  = 1 22 (84)2(05) = 1764 2 , so the maximum error is about 1764 2 ≈ 179 cm3. The relative error is approximately   = 17642 (84)3(62) = 1 56 ≈ 0018 = 18%. 36. For a hemispherical dome,  = 2 33 ⇒  = 22 . When  = 1 2(50) = 25 m and  = 005 cm = 00005 m,  = 2(25)2(00005) = 58 , so the amount of paint needed is about 58 ≈ 2 m3. 37. (a)  = 2 ⇒ ∆ ≈  = 2  = 2 ∆ (b) The error is ∆ −  = [( + ∆)2 − 2] − 2 ∆ = 2 + 2 ∆ + (∆)2 − 2 − 2 ∆ = (∆)2. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.10 LINEAR APPROXIMATIONS AND DIFFERENTIALS ¤ 261 38. (a) sin  = 20  ⇒  = 20 csc  ⇒  = 20(− csc  cot )  = −20 csc 30◦ cot 30◦ (±1◦) = −20(2)√3 ±180   = ±2 √9 3  So the maximum error is about ± 2 9 √3  ≈ ±121 cm. (b) The relative error is ∆  ≈   = ± 2 9 √3  20(2) = ± √3 180  ≈ ±003, so the percentage error is approximately ±3%. 39.  =  ⇒  =   ⇒  = −2 . The relative error in calculating  is ∆ ≈   = −( 2)  = −  . Hence, the relative error in calculating  is approximately the same (in magnitude) as the relative error in . 40.  = 4 ⇒  = 43  ⇒   = 43  4 = 4   . Thus, the relative change in  is about 4 times the relative change in . So a 5% increase in the radius corresponds to a 20% increase in blood flow. 41. (a)  =    = 0  = 0 (b) () =   ()  =     =   (c) ( + ) =   ( + )  =    +    =    +    =  +  (d) () =   ()  =    +     =     +     =   +   (e)    =       =    −    2  =     −     2 =   −   2 (f )  () =   ()  = −1  42. (a) () = sin  ⇒  0() = cos , so (0) = 0 and  0(0) = 1. Thus, () ≈ (0) +  0(0)( − 0) = 0 + 1( − 0) = . (b) [continued] °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.262 ¤ CHAPTER 3 DIFFERENTIATION RULES We want to know the values of  for which  =  approximates  = sin  with less than a 2% difference; that is, the values of  for which   − sin  sin    002 ⇔ −002   − sin  sin   002 ⇔ −−0002 sin 02 sin       −− sin sin     0 0 02 sin 02 sin   if if sin sin     0 0 ⇔ 0 1 98 sin 02 sin         1 0 02 sin 98 sin   if if sin sin     0 0 In the first figure, we see that the graphs are very close to each other near  = 0. Changing the viewing rectangle and using an intersect feature (see the second figure) we find that  =  intersects  = 102 sin at  ≈ 0344. By symmetry, they also intersect at  ≈ −0344 (see the third figure). Converting 0344 radians to degrees, we get 0344 180  ◦  ≈ 197◦ ≈ 20◦, which verifies the statement. 43. (a) The graph shows that  0(1) = 2, so () = (1) +  0(1)( − 1) = 5 + 2( − 1) = 2 + 3. (09) ≈ (09) = 48 and (11) ≈ (11) = 52. (b) From the graph, we see that  0() is positive and decreasing. This means that the slopes of the tangent lines are positive, but the tangents are becoming less steep. So the tangent lines lie above the curve. Thus, the estimates in part (a) are too large. 44. (a) 0() = √2 + 5 ⇒ 0(2) = √9 = 3. (195) ≈ (2) + 0(2)(195 − 2) = −4 + 3(−005) = −415. (205) ≈ (2) + 0(2)(205 − 2) = −4 + 3(005) = −385. (b) The formula 0() = √2 + 5 shows that 0() is positive and increasing. This means that the slopes of the tangent lines are positive and the tangents are getting steeper. So the tangent lines lie below the graph of . Hence, the estimates in part (a) are too small. LABORATORY PROJECT Taylor Polynomials 1. We first write the functions described in conditions (i), (ii), and (iii): () =  +  + 2 () = cos   0() =  + 2  0() = − sin   00() = 2  00() = − cos  So, taking  = 0, our three conditions become (0) = (0):  = cos 0 = 1  0(0) =  0(0):  = − sin 0 = 0  00(0) =  00(0): 2 = − cos 0 = −1 ⇒  = − 1 2 The desired quadratic function is () = 1 − 1 22, so the quadratic approximation is cos  ≈ 1 − 1 22. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.LABORATORY PROJECT TAYLOR POLYNOMIALS ¤ 263 The figure shows a graph of the cosine function together with its linear approximation () = 1 and quadratic approximation () = 1 − 1 22 near 0. You can see that the quadratic approximation is much better than the linear one. 2. Accuracy to within 01 means that  cos  − 1 − 1 22   01 ⇔ −01  cos  − 1 − 1 22  01 ⇔ 01  1 − 1 22 − cos   −0.1 ⇔ cos  + 01  1 − 1 22  cos  − 01 ⇔ cos  − 01  1 − 1 22  cos  + 01. From the figure we see that this is true between  and . Zooming in or using an intersect feature, we find that the -coordinates of  and  are about ±126. Thus, the approximation cos  ≈ 1 − 1 22 is accurate to within 01 when −126    126. 3. If  () =  + ( − ) + ( − )2, then  0() =  + 2( − ) and  00() = 2. Applying the conditions (i), (ii), and (iii), we get () = ():  = ()  0() =  0():  =  0()  00() =  00(): 2 =  00() ⇒  = 1 2 00() Thus, () =  + ( − ) + ( − )2 can be written in the form () = () +  0()( − ) + 1 2 00()( − )2. 4. From Example 3.10.1, we have (1) = 2,  0(1) = 1 4, and  0() = 1 2( + 3)−12. So  00() = − 1 4( + 3)−32 ⇒  00(1) = − 32 1 . From Problem 3, the quadratic approximation () is √ + 3 ≈ (1) +  0(1)( −1) + 1 2 00(1)(−1)2 = 2 + 1 4( −1) − 64 1 ( −1)2. The figure shows the function () = √ + 3 together with its linear approximation () = 1 4 + 7 4 and its quadratic approximation (). You can see that () is a better approximation than () and this is borne out by the numerical values in the following chart. from () actual value from () √398 19950 199499373    199499375 √405 20125 201246118    201246094 √42 20500 204939015    204937500 5. () = 0 + 1( − ) + 2( − )2 + 3( − )3 + · · · + ( − ). If we put  =  in this equation, then all terms after the first are 0 and we get () = 0. Now we differentiate () and obtain  0 () = 1 + 22( − ) + 33( − )2 + 44( − )3 + · · · + ( − )−1. Substituting  =  gives 0 () = 1. Differentiating again, we have 00() = 22 + 2 · 33( − ) + 3 · 44( − 2) + · · · + ( − 1)( − )−2 and so °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.264 ¤ CHAPTER 3 DIFFERENTIATION RULES  00  () = 22. Continuing in this manner, we get 000() = 2 · 33 + 2 · 3 · 44( − ) + · · · + ( − 2)( − 1)( − )−3 and  000  () = 2 · 33. By now we see the pattern. If we continue to differentiate and substitute  = , we obtain (4)() = 2 · 3 · 44 and in general, for any integer  between 1 and , ()() = 2 · 3 · 4 · 5 · · · · ·  = !  ⇒  = ()() ! . Because we want  and  to have the same derivatives at , we require that  =  ()!() for  = 1 2     . 6. () = () +  0()( − ) +  00() 2! ( − )2 + · · · +  ()!()( − ). To compute the coefficients in this equation we need to calculate the derivatives of  at 0: () = cos  (0) = cos 0 = 1  0() = − sin   0(0) = − sin 0 = 0  00() = − cos   00(0) = −1  000() = sin   000(0) = 0  (4)() = cos   (4)(0) = 1 We see that the derivatives repeat in a cycle of length 4, so  (5)(0) = 0,  (6)(0) = −1,  (7)(0) = 0, and  (8)(0) = 1. From the original expression for (), with  = 8 and  = 0, we have 8() = (0) +  0(0)( − 0) +  00(0) 2! ( − 0)2 +  000 3! (0)( − 0)3 + · · · +  (8) 8!(0)( − 0)8 = 1 + 0 ·  + −1 2! 2 + 0 · 3 + 4! 1 4 + 0 · 5 + −6!16 + 0 · 7 + 8! 1 8 = 1 − 2! 2 + 4! 4 − 6! 6 + 8! 8 and the desired approximation is cos  ≈ 1 − 2 2! + 4 4! − 6 6! + 8 8! . The Taylor polynomials 2, 4, and 6 consist of the initial terms of 8 up through degree 2, 4, and 6, respectively. Therefore, 2() = 1 − 2 2! , 4() = 1 − 2! 2 + 4! 4 , and 6() = 1 − 2 2! + 4 4! − 6 6! . We graph 2, 4, 6, 8, and : Notice that 2() is a good approximation to cos  near 0, 4() is a good approximation on a larger interval, 6() is a better approximation, and 8() is better still. Each successive Taylor polynomial is a good approximation on a larger interval than the previous one. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.11 HYPERBOLIC FUNCTIONS ¤ 265 3.11 Hyperbolic Functions 1. (a) sinh 0 = 1 2(0 − −0) = 0 (b) cosh 0 = 1 2(0 + −0) = 1 2(1 + 1) = 1 2. (a) tanh 0 = (0 − −0)2 (0 + −0)2 = 0 (b) tanh 1 = 1 1 − +  − −1 1 = 2 2 − + 1 1 ≈ 076159 3. (a) cosh(ln 5) = 1 2(ln 5 + −ln 5) = 1 25 + (ln 5)−1 = 1 2(5 + 5−1) = 1 25 + 1 5 = 13 5 (b) cosh 5 = 1 2(5 + −5) ≈ 7420995 4. (a) sinh 4 = 1 2(4 − −4) ≈ 2728992 (b) sinh(ln 4) = 1 2(ln 4 − −ln 4) = 1 24 − (ln 4)−1 = 1 2(4 − 4−1) = 1 24 − 1 4 = 15 8 5. (a) sech 0 = 1 cosh 0 = 1 1 = 1 (b) cosh−1 1 = 0 because cosh 0 = 1. 6. (a) sinh 1 = 1 2(1 − −1) ≈ 117520 (b) Using Equation 3, we have sinh−1 1 = ln1 + √12 + 1  = ln1 + √2  ≈ 088137. 7. sinh(−) = 1 2[− − −(−)] = 1 2(− − ) = − 1 2(− − ) = − sinh  8. cosh(−) = 1 2[− + −(−)] = 1 2(− + ) = 1 2( + −) = cosh  9. cosh  + sinh  = 1 2( + −) + 1 2( − −) = 1 2(2) =  10. cosh  − sinh  = 1 2( + −) − 1 2( − −) = 1 2(2−) = − 11. sinh  cosh  + cosh  sinh  =  1 2( − −) 1 2( + −) +  1 2( + −) 1 2( − −) = 14 [(+ + − − −+ − −−) + (+ − − + −+ − −−)] = 14 (2+ − 2−−) = 1 2[+ − −(+)] = sinh( + ) 12. cosh  cosh  + sinh  sinh  =  1 2( + −) 1 2( + −) +  1 2( − −) 1 2( − −) = 14 (+ + − + −+ + −−) + (+ − − − −+ + −−) = 14 (2+ + 2−−) = 1 2+ + −(+) = cosh( + ) 13. Divide both sides of the identity cosh2  − sinh2  = 1 by sinh2 : cosh2  sinh2  − sinh2  sinh2  = 1 sinh2  ⇔ coth2  − 1 = csch2 . 14. tanh( + ) = sinh( + ) cosh( + ) = sinh  cosh  + cosh  sinh  cosh  cosh  + sinh  sinh  = sinh  cosh  cosh  cosh  + cosh  sinh  cosh  cosh  cosh  cosh  cosh  cosh  + sinh  sinh  cosh  cosh  = tanh  + tanh  1 + tanh  tanh  15. Putting  =  in the result from Exercise 11, we have sinh 2 = sinh( + ) = sinh  cosh  + cosh  sinh  = 2 sinh  cosh . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.266 ¤ CHAPTER 3 DIFFERENTIATION RULES 16. Putting  =  in the result from Exercise 12, we have cosh 2 = cosh( + ) = cosh  cosh  + sinh  sinh  = cosh2  + sinh2 . 17. tanh(ln ) = sinh(ln ) cosh(ln ) = (ln  − − ln )2 (ln  + − ln )2 =  − (ln )−1  + (ln )−1 =  − −1  + −1 =  − 1  + 1 = (2 − 1) (2 + 1) = 2 − 1 2 + 1 18. 1 + tanh  1 − tanh  = 1 + (sinh ) cosh  1 − (sinh )  cosh  = cosh  + sinh  cosh  − sinh  = 12 ( + −) + 1 2( − −) 12 ( + −) − 1 2( − −) =  − = 2 Or: Using the results of Exercises 9 and 10, cosh  + sinh  cosh  − sinh  =  − = 2 19. By Exercise 9, (cosh  + sinh) = () =  = cosh  + sinh . 20. coth  = 1 tanh  ⇒ coth = tanh 1  = 121 13 = 13 12. sech2  = 1 − tanh2  = 1 −  12 132 = 169 25 ⇒ sech  = 13 5 [sech, like cosh, is positive]. cosh  = 1 sech  ⇒ cosh  = 5113 = 13 5 . tanh  = sinh  cosh  ⇒ sinh  = tanh  cosh  ⇒ sinh  = 12 13 · 13 5 = 12 5 . csch  = 1 sinh  ⇒ csch  = 1215 = 12 5 . 21. sech  = 1 cosh  ⇒ sech  = 513 = 35. cosh2  − sinh2  = 1 ⇒ sinh2  = cosh2  − 1 =  5 32 − 1 = 16 9 ⇒ sinh  = 4 3 [because   0]. csch  = 1 sinh  ⇒ csch  = 41 3 = 34. tanh  = sinh  cosh  ⇒ tanh  = 4 5 3 3 = 45. coth  = 1 tanh  ⇒ coth = 41 5 = 54. 22. (a) 23. (a) lim →∞ tanh  = lim →∞  − −  + − · − − = lim →∞ 1 − −2 1 + −2 = 1 − 0 1 + 0 = 1 (b) lim →−∞ tanh  = lim →−∞  − −  + − ·   = lim →−∞ 2 − 1 2 + 1 = 0 − 1 0 + 1 = −1 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.11 HYPERBOLIC FUNCTIONS ¤ 267 (c) lim →∞ sinh  = lim →∞  − − 2 = ∞ (d) lim →−∞ sinh  = lim →−∞  − − 2 = −∞ (e) lim →∞ sech  = lim →∞ 2  + − = 0 (f ) lim →∞ coth  = lim →∞  + −  − − · − − = lim →∞ 1 + −2 1 − −2 = 1 + 0 1 − 0 = 1 [Or: Use part (a)] (g) lim →0+ coth  = lim →0+ cosh  sinh  = ∞, since sinh  → 0 through positive values and cosh  → 1. (h) lim →0− coth  = lim →0− cosh  sinh  = −∞, since sinh  → 0 through negative values and cosh  → 1. (i) lim →−∞ csch  = lim →−∞ 2  − − = 0 (j) lim →∞ sinh   = lim →∞  − − 2 = lim →∞ 1 − −2 2 = 1 − 0 2 = 1 2 24. (a)   (cosh ) =    1 2( + −) = 1 2( − −) = sinh  (b)   (tanh ) =   cosh sinh  = cosh  coshcosh  −2sinh   sinh  = cosh2cosh  −2sinh  2  = cosh 1 2  = sech2  (c)   (csch ) =   sinh 1  = −sinh cosh2 = −sinh 1  · cosh sinh  = − csch  coth  (d)   (sech ) =   cosh 1  = −cosh sinh2 = −cosh 1  · cosh sinh  = − sech  tanh  (e)   (coth ) =   cosh sinh  = sinh  sinhsinh  −2cosh   cosh  = sinh2sinh  −2cosh  2  = −sinh12  = − csch2  25. Let  = sinh−1 . Then sinh  =  and, by Example 1(a), cosh2  − sinh2  = 1 ⇒ [with cosh   0] cosh  =1 + sinh2  = √1 + 2. So by Exercise 9,  = sinh  + cosh  =  + √1 + 2 ⇒  = ln + √1 + 2 . 26. Let  = cosh−1 . Then cosh  =  and  ≥ 0, so sinh  = cosh2  − 1 = √2 − 1. So, by Exercise 9,  = cosh  + sinh  =  + √2 − 1 ⇒  = ln + √2 − 1 . Another method: Write  = cosh  = 1 2 + − and solve a quadratic, as in Example 3. 27. (a) Let  = tanh−1 . Then  = tanh  = sinh  cosh  = ( − −)2 ( + −)2 ·   = 2 − 1 2 + 1 ⇒ 2 +  = 2 − 1 ⇒ 1 +  = 2 − 2 ⇒ 1 +  = 2(1 − ) ⇒ 2 = 1 +  1 −  ⇒ 2 = ln1 + 1 −   ⇒  = 1 2 ln1 + 1 −  . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.268 ¤ CHAPTER 3 DIFFERENTIATION RULES (b) Let  = tanh−1 . Then  = tanh , so from Exercise 18 we have 2 = 1 + tanh 1 − tanh = 1 +  1 −  ⇒ 2 = ln1 + 1 −   ⇒  = 1 2 ln1 + 1 −  . 28. (a) (i)  = csch−1  ⇔ csch  =  ( 6= 0) (ii) We sketch the graph of csch−1 by reflecting the graph of csch (see Exercise 22) about the line  = . (iii) Let  = csch−1 . Then  = csch  = 2  − − ⇒  − − = 2 ⇒ ()2 − 2 −  = 0 ⇒  = 1 ± √2 + 1  . But   0, so for   0,  = 1 + √2 + 1  and for   0,  = 1 − √2 + 1  . Thus, csch−1  = ln1 + √|2|+ 1. (b) (i)  = sech−1  ⇔ sech  =  and   0 (ii) We sketch the graph of sech−1 by reflecting the graph of sech (see Exercise 22) about the line  = . (iii) Let  = sech−1 , so  = sech  = 2  + − ⇒  + − = 2 ⇒  ()2 − 2 +  = 0 ⇔  = 1 ± √1 − 2  . But   0 ⇒   1. This rules out the minus sign because 1 − √1 − 2   1 ⇔ 1 − √1 − 2   ⇔ 1 −   √1 − 2 ⇔ 1 − 2 + 2  1 − 2 ⇔ 2   ⇔   1, but  = sech  ≤ 1. Thus,  = 1 + √1 − 2  ⇒ sech−1  = ln1 + √1 − 2 . (c) (i)  = coth−1  ⇔ coth  =  (ii) We sketch the graph of coth−1 by reflecting the graph of coth (see Exercise 22) about the line  = . (iii) Let  = coth−1 . Then  = coth =  + −  − − ⇒  − − =  + − ⇒ ( − 1) = ( + 1)− ⇒ 2 =  + 1  − 1 ⇒ 2 = ln  + 1  − 1 ⇒ coth−1  = 1 2 ln  + 1  − 1 29. (a) Let  = cosh−1 . Then cosh  =  and  ≥ 0 ⇒ sinh    = 1 ⇒   = 1 sinh  = 1 cosh2  − 1 = 1 √2 − 1 [since sinh  ≥ 0 for  ≥ 0]. Or: Use Formula 4. (b) Let  = tanh−1 . Then tanh =  ⇒ sech2    = 1 ⇒   = sech 1 2 = 1 − tanh 1 2  = 1 −12 . Or: Use Formula 5. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.11 HYPERBOLIC FUNCTIONS ¤ 269 (c) Let  = csch−1 . Then csch  =  ⇒ − csch  coth    = 1 ⇒   = −csch 1coth . By Exercise 13, coth  = ±csch2  + 1 = ±√2 + 1. If   0, then coth   0, so coth = √2 + 1. If   0, then coth   0, so coth  = −√2 + 1. In either case we have   = − 1 csch  coth  = − 1 || √2 + 1. (d) Let  = sech−1 . Then sech  =  ⇒ − sech  tanh    = 1 ⇒   = − 1 sech  tanh  = − 1 sech  1 − sech2 = − 1  √1 − 2 . [Note that   0 and so tanh  0.] (e) Let  = coth−1 . Then coth  =  ⇒ − csch2    = 1 ⇒   = −csch 12  = 1 − coth 1 2  = 1 −12 by Exercise 13. 30. () =  cosh  ⇒PR  0() =  sinh  + (cosh ) = (sinh  + cosh ), or, using Exercise 9, () = 2. 31. () = tanh √ ⇒  0() = sech2 √   √ = sech2 √ 2√1 = sech 2√2√ 32. () = sinh2  = (sinh )2 ⇒ 0() = 2(sinh )1   (sinh ) = 2 sinh  cosh , or, using Exercise 15, sinh 2. 33. () = sinh(2) ⇒ 0() = cosh(2)   (2) = 2 cosh(2) 34. () = ln(sinh ) ⇒  0() = 1 sinh    sinh  = sinh 1  cosh  = coth  35. () = sinh(ln ) ⇒ 0() = cosh(ln )   ln  = 12ln  + − ln 1  = 21 + 1  = 212 + 1   = 22+ 1 2 Or: () = sinh(ln ) = 1 2 (ln  − − ln ) = 1 2 − 1  ⇒ 0() = 121 + 12  = 22+ 1 2 36.  = sech (1 + ln sech ) ⇒PR 0 = sech    (1 + ln sech ) + (1 + ln sech )   sech  = sech  −sech sech  tanh   + (1 + ln sech )(−sech  tanh ) = −sech  tanh  [1 + (1 + ln sech )] = −sech  tanh  (2 + ln sech ) 37.  = cosh 3 ⇒ 0 = cosh 3 · sinh 3 · 3 = 3cosh 3 sinh 3 38. () = 1 + sinh  1 − sinh  QR ⇒  0() = (1 − sinh ) cosh  − (1 + sinh )(− cosh ) (1 − sinh )2 = cosh  − sinh  cosh  + cosh  + sinh  cosh  (1 − sinh )2 = 2 cosh  (1 − sinh )2 °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.270 ¤ CHAPTER 3 DIFFERENTIATION RULES 39. () =  coth √2 + 1 ⇒PR 0() = − csch2 √2 + 1  1 2(2 + 1)−12 · 2 + coth √2 + 1 (1) = coth √2 + 1 − √22+ 1 csch2 √2 + 1 40.  = sinh−1(tan ) ⇒ 0 = 1 + (tan 1 )2   (tan ) = √sec sec22 = ||sec sec2|| =| sec  | 41.  = cosh−1√ ⇒ 0 = (√1)2 − 1   (√ ) = √1− 1 2√1 = 2(1 − 1) 42.  =  tanh−1  + ln √1 − 2 =  tanh−1  + 1 2 ln(1 − 2) ⇒ 0 = tanh−1  +  1 − 2 + 1 2 1 −12 (−2) = tanh−1  43.  =  sinh−1(3) − √9 + 2 ⇒ 0 = sinh−13  +  1 + ( 133)2 − 2 √9 + 2 2 = sinh−13  + √9 +  2 − √9 +  2 = sinh−1 3  44.  = sech −1(−) ⇒ 0 = − 1 −1 − (−)2   (−) = −−√11− −2 (−−) = √1 −1−2 45.  = coth−1(sec ) ⇒ 0 = 1 1 − (sec )2   (sec ) = sec 1 −sec tan 2  = 1 −sec (tan  tan 2  + 1)  = sec − tan  tan 2  = − sec  tan  = − 1 cos  sin  cos  = − 1 sin  = − csc  46. 1 + tanh  1 − tanh  = 1 + (sinh ) cosh  1 − (sinh ) cosh  = cosh  + sinh  cosh  − sinh  =  − [by Exercises 9 and 10] = 2, so 4 1 + tanh 1 − tanh   = √4 2 = 2. Thus,   4 1 + tanh 1 − tanh   =   (2) = 122. 47.   arctan(tanh ) = 1 + (tanh 1 )2   (tanh ) = 1 + tanh sech2 2  = 1 + (sinh 1 cosh 2 )2 cosh  2  = 1 cosh2  + sinh2  = 1 cosh 2 [by Exercise 16] = sech 2 48. (a) Let  = 003291765. A graph of the central curve,  = () = 21149 − 2096 cosh , is shown. (b) (0) = 21149 − 2096 cosh 0 = 21149 − 2096(1) = 19053 m (c)  = 100 ⇒ 100 = 21149 − 2096 cosh  ⇒ 2096 cosh  = 11149 ⇒ cosh  = 11149 2096 ⇒  = ± cosh−1 11149 2096 ⇒  = ± 1  cosh−1 11149 2096 ≈ ±7156 m. The points are approximately (±7156 100). °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.SECTION 3.11 HYPERBOLIC FUNCTIONS ¤ 271 (d) () = 21149 − 2096 cosh  ⇒  0() = −2096 sinh  · .  0±1 cosh−1 111 2096 49 = −2096 sinh±1 cosh−1 111 2096 49 = −2096 sinh± cosh−1 111 2096 49 ≈ ∓36. So the slope at (7156 100) is about −36 and the slope at (−7156 100) is about 36. 49. As the depth  of the water gets large, the fraction 2  gets large, and from Figure 3 or Exercise 23(a), tanh2 approaches 1. Thus,  =  2 tanh2 ≈  2 (1) =  2 . 50. For  =  cosh() with   0, we have the -intercept equal to . As  increases, the graph flattens. 51. (a)  = 20 cosh(20) − 15 ⇒ 0 = 20 sinh(20) · 20 1 = sinh(20). Since the right pole is positioned at  = 7, we have 0(7) = sinh 20 7 ≈ 03572. (b) If  is the angle between the tangent line and the -axis, then tan  = slope of the line = sinh 20 7 , so  = tan−1sinh 20 7  ≈ 0343 rad ≈ 1966◦. Thus, the angle between the line and the pole is  = 90◦ −  ≈ 7034◦. 52. We differentiate the function twice, then substitute into the differential equation:  =   cosh   ⇒   =   sinh     = sinh   ⇒  22 = cosh     =   cosh   . We evaluate the two sides separately: LHS = 2 2 =   cosh   and RHS =   1 +   2 =   1 + sinh2   =   cosh   , by the identity proved in Example 1(a). 53. (a) From Exercise 52, the shape of the cable is given by  = () =   cosh  . The shape is symmetric about the -axis, so the lowest point is (0 (0)) = 0    and the poles are at  = ±100. We want to find  when the lowest point is 60 m, so   = 60 ⇒  = 60 = (60 m)(2 kgm)(98 ms2) = 1176 kg-m s2 , or 1176 N (newtons). The height of each pole is (100) =   cosh ·100 = 60 cosh100 60  ≈ 16450 m. (b) If the tension is doubled from  to 2, then the low point is doubled since   = 60 ⇒ 2  = 120. The height of the poles is now (100) = 2  cosh2·100 = 120 cosh100 120 ≈ 16413 m, just a slight decrease. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.272 ¤ CHAPTER 3 DIFFERENTIATION RULES 54. (a) lim →∞ () = lim →∞  tanh   =   lim →∞tanh   =   · 1 as   → ∞→ ∞ ,  =   (b) Belly-to-earth:  = 98,  = 0515,  = 60, so the terminal velocity is 60(9 0515 8) ≈ 3379 ms. Feet-first:  = 98,  = 0067,  = 60, so the terminal velocity is 60(9 0067 8) ≈ 9368 ms. 55. (a)  =  sinh  +  cosh  ⇒ 0 =  cosh  +  sinh  ⇒ 00 = 2 sinh  + 2 cosh  = 2( sinh  +  cosh ) = 2 (b) From part (a), a solution of 00 = 9 is () =  sinh 3 +  cosh 3. So −4 = (0) =  sinh 0 +  cosh 0 = , so  = −4. Now 0() = 3 cosh 3 − 12 sinh 3 ⇒ 6 = 0(0) = 3 ⇒  = 2, so  = 2 sinh 3 − 4 cosh 3. 56. cosh  = cosh[ln(sec  + tan )] = 1 2ln(sec +tan ) + − ln(sec +tan ) = 12sec  + tan  + sec  + tan 1   = 1 2 sec  + tan  + (sec  + tan sec −)(sec tan− tan ) = 12sec  + tan  + sec sec 2   − − tan tan2  = 12 (sec  + tan  + sec  − tan ) = sec  57. The tangent to  = cosh  has slope 1 when 0 = sinh  = 1 ⇒  = sinh−1 1 = ln1 + √2 , by Equation 3. Since sinh  = 1 and  = cosh  = 1 + sinh2 , we have cosh  = √2. The point is ln1 + √2  , √2 . 58. () = tanh( sin ), where  is a positive integer. Note that ( + 2) = (); that is,  is periodic with period 2. Also, from Figure 3, −1  tanh   1, so we can choose a viewing rectangle of [0 2] × [−1 1]. From the graph, we see that () becomes more rectangular looking as  increases. As  becomes large, the graph of  approaches the graph of  = 1 on the intervals (2 (2 + 1)) and  = −1 on the intervals ((2 − 1) 2). 59. If  + − =  cosh( + ) [or  sinh( + )], then  + − =  2 + ± −− = 2  ± −− =  2  ±  2 −−. Comparing coefficients of  and −, we have  = 2  (1) and  = ± 2 − (2). We need to find  and . Dividing equation (1) by equation (2) gives us  = ±2 ⇒ () 2 = ln±   ⇒  = 1 2 ln±  . Solving equations (1) and (2) for  gives us  = 2  and  = ±  2, so 2  = ±  2 ⇒ 2 = ±4 ⇒  = 2 √±. () If   0, we use the + sign and obtain a cosh function, whereas if   0, we use the − sign and obtain a sinh function. In summary, if  and  have the same sign, we have  + − = 2 √ cosh + 1 2 ln  , whereas, if  and  have the opposite sign, then  + − = 2 √− sinh + 1 2 ln−  . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 3 REVIEW ¤ 273 3 Review 1. True. This is the Sum Rule. 2. False. See the warning before the Product Rule. 3. True. This is the Chain Rule. 4. True.   () =  [()]12 = 12[()]−12  0() = 2 0(()) 5. False.   (√ ) =  0(√ ) · 1 2−12 = 20(√√), which is not 20√(). 6. False.  = 2 is a constant, so 0 = 0, not 2. 7. False.   (10) = 10 ln 10, which is not equal to 10−1. 8. False. ln 10 is a constant, so its derivative,   (ln 10), is 0, not 10 1 . 9. True.   (tan2 ) = 2 tan  sec2 , and   (sec2 ) = 2 sec  (sec  tan ) = 2 tan  sec2 . Or:   (sec2 ) =   (1 + tan2 ) =   (tan2 ). 10. False. () =  2 +   = 2 +  for  ≥ 0 or  ≤ −1 and  2 +   = −(2 + ) for −1    0. So  0() = 2 + 1 for   0 or   −1 and  0() = −(2 + 1) for −1    0. But |2 + 1| = 2 + 1 for  ≥ − 1 2 and |2 + 1| = −2 − 1 for   − 1 2. 11. True. If () =  + −1−1 + · · · + 1 + 0, then 0() = −1 + ( − 1)−1−2 + · · · + 1, which is a polynomial. 12. True. () = (6 − 4)5 is a polynomial of degree 30, so its 31st derivative,  (31)(), is 0. 13. True. If () = () (), then 0() = ()0([)(−)] 2()0(), which is a quotient of polynomials, that is, a rational function. 14. False. A tangent line to the parabola  = 2 has slope  = 2, so at (−2 4) the slope of the tangent is 2(−2) = −4 and an equation of the tangent line is  − 4 = −4( + 2). [The given equation,  − 4 = 2( + 2), is not even linear!] 15. True. () = 5 ⇒ 0() = 54 ⇒ 0(2) = 5(2)4 = 80, and by the definition of the derivative, lim →2 () − (2)  − 2 = 0(2) = 5(2)4 = 80. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.274 ¤ CHAPTER 3 DIFFERENTIATION RULES 1.  = (2 + 3)4 ⇒ 0 = 4(2 + 3)3(2 + 32) = 4(2)3(1 + )3(2 + 3) = 47( + 1)3(3 + 2) 2.  = √1 − √513 = −12 − −35 ⇒ 0 = −1 2−32 + 35−85 or 5√35 3 − 21√ or 10 1 −85(−5110 + 6) 3.  = 2 −√+ 2 = 32 − 12 + 2−12 ⇒ 0 = 3212 − 12−12 − −32 = 32√ − 2√1 − √13 4.  = tan  1 + cos  ⇒ 0 = (1 + cos ) sec2  − tan(− sin ) (1 + cos )2 = (1 + cos ) sec2  + tan  sin  (1 + cos )2 5.  = 2 sin  ⇒ 0 = 2(cos ) + (sin )(2) = (cos  + 2 sin ) 6.  =  cos−1  ⇒ 0 = −√1 1− 2  + (cos−1 )(1) = cos−1  − √1 − 2 7.  = 4 − 1 4 + 1 ⇒ 0 = (4 + 1)4(43 + 1) − (42 − 1)43 = 43[(4 (+ 1) 4 + 1) − (24 − 1)] = (48+ 1) 3 2 8.  () =   ( sin ) ⇒ 0 +  · 1 =  cos  + sin  · 0 ⇒ 0 − sin  · 0 =  cos  −  ⇒ ( − sin )0 =  cos  −  ⇒ 0 =  cos  −   − sin  9.  = ln( ln ) ⇒ 0 = 1 ln ( ln )0 =  ln 1   · 1 + ln  · 1 = 1 + ln  ln  Another method:  = ln( ln ) = ln  + ln ln  ⇒ 0 = 1  + 1 ln  · 1  = ln  + 1  ln  10.  =  cos  ⇒ 0 = (cos )0 + cos  ()0 = (− sin  · ) + cos  ( · ) = ( cos  −  sin) 11.  = √ cos √ ⇒ 0 = √ cos √ 0 + cos √ √ 0 = √ − sin √  1 2−12 + cos √  1 2−12 = 12 −12 −√ sin √ + cos √  = cos √ −2 √√ sin √ 12.  = (arcsin 2)2 ⇒ 0 = 2(arcsin 2) · (arcsin 2)0 = 2 arcsin 2 · 1 −1(2)2 · 2 = 4 arcsin 2 √1 − 42 13.  = 1 2 ⇒ 0 = 2(1)(0−2)21 20 = 2(1)(−1 42) − 1(2) = −1(1 + 2 4 ) 14.  = ln sec  ⇒ 0 = 1 sec    (sec ) = sec 1  (sec  tan ) = tan  °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 3 REVIEW ¤ 275 15.   ( +  cos ) =   (2) ⇒ 0 + (− sin  · 0) + cos  · 1 = 20 +  · 2 ⇒ 0 −  sin  · 0 − 20 = 2 − cos  ⇒ (1 −  sin  − 2)0 = 2 − cos  ⇒ 0 = 2 − cos  1 −  sin  − 2 16.  = 2 +−1+ 14 ⇒ 0 = 4 2 +−1+ 13   2 +−1+ 1 = 42 +−1+ 13 (2 +  + 1)(1) (2 +− + 1) ( −21)(2 + 1) = 4( − 1)3 (2 +  + 1)3 2 +  + 1 − 22 +  + 1 (2 +  + 1)2 = 4( − 1)3(−2 + 2 + 2) (2 +  + 1)5 17.  = √arctan  ⇒ 0 = 1 2 (arctan )−12   (arctan ) = 2 √arctan1 (1 + 2) 18.  = cot(csc ) ⇒ 0 = − csc2(csc )   (csc ) = − csc2(csc ) · (− csc  cot ) = csc2(csc ) csc  cot  19.  = tan1 + 2  ⇒ 0 = sec21 + 2    1 + 2  = sec21 + 2  · (1 +(1 + 2)(1) 2−)2(2) = (1 + 1 −22)2 sec21 + 2  20.  =  sec  ⇒ 0 =  sec    ( sec ) =  sec ( sec  tan  + sec  · 1) = sec   sec ( tan  + 1) 21.  = 3 ln  ⇒ 0 = 3 ln (ln 3)  ( ln ) = 3 ln (ln 3)  · 1 + ln  · 1 = 3 ln (ln 3)(1 + ln ) 22.  = sec(1 + 2) ⇒ 0 = 2 sec(1 + 2) tan(1 + 2) 23.  = (1 − −1)−1 ⇒ 0 = −1(1 − −1)−2[−(−1−2)] = −(1 − 1)−2−2 = −(( − 1))−2−2 = −( − 1)−2 24.  = 1 3  + √ =  + √ −13 ⇒ 0 = − 1 3 + √ −431 + 2 √1  25. sin() = 2 −  ⇒ cos()(0 +  · 1) = 2 − 0 ⇒  cos()0 + 0 = 2 −  cos() ⇒ 0[ cos() + 1] = 2 −  cos() ⇒ 0 = 2 −  cos()  cos() + 1 26.  = sin√ ⇒ 0 = 1 2sin√ −12cos√ 2 √1  = 4 cos  sin √√ 27.  = log5(1 + 2) ⇒ 0 = 1 (1 + 2) ln 5   (1 + 2) = (1 + 22) ln 5 28.  = (cos ) ⇒ ln  = ln(cos ) =  ln cos  ⇒ 0  =  · 1 cos  · (− sin ) + ln cos  · 1 ⇒ 0 = (cos )(ln cos  −  tan ) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.276 ¤ CHAPTER 3 DIFFERENTIATION RULES 29.  = ln sin  − 1 2 sin2  ⇒ 0 = 1 sin  · cos  − 1 2 · 2 sin  · cos  = cot  − sin  cos  30.  = (2 + 1)4 (2 + 1)3(3 − 1)5 ⇒ ln  = ln (2 + 1)4 (2 + 1)3(3 − 1)5 = ln(2 + 1)4 − ln[(2 + 1)3(3 − 1)5] = 4 ln(2 + 1) − [ln(2 + 1)3 + ln(3 − 1)5] = 4 ln(2 + 1) − 3 ln(2 + 1) − 5 ln(3 − 1) ⇒ 0  = 4 · 1 2 + 1 · 2 − 3 · 21+ 1 · 2 − 5 · 31− 1 · 3 ⇒ 0 = (2 + 1) (2 3+ 1) (34− 1)5 28+ 1  − 26+ 1 − 315 − 1. [The answer could be simplified to 0 = −(2 + 56 + 9)(2 + 1)3 (2 + 1)4(3 − 1)6 , but this is unnecessary.] 31.  =  tan−1(4) ⇒ 0 =  · 1 1 + (4)2 · 4 + tan−1(4) · 1 = 1 + 16 4 2 + tan−1(4) 32.  = cos  + cos( ) ⇒ 0 = cos (− sin ) + [− sin( ) ·  ] = − sin  cos  −   sin( ) 33.  = ln |sec 5 + tan 5| ⇒ 0 = 1 sec 5 + tan 5 (sec 5 tan 5 · 5 + sec2 5 · 5) = 5 sec 5 (tan 5 + sec 5) sec 5 + tan 5 = 5 sec 5 34.  = 10 tan  ⇒ 0 = 10 tan  · ln 10 · sec2  ·  = (ln 10)10 tan  sec2  35.  = cot(32 + 5) ⇒ 0 = − csc2(32 + 5)(6) = −6 csc2(32 + 5) 36.  =  ln(4) ⇒ 0 = 1 2 [ ln(4)]−12   [ ln(4)] = 2 1ln(4) · 1 · ln(4) +  · 14 · 43 = 2 1ln(4) · [ln(4) + 4] = 2ln( 4ln( ) + 4 4) Or: Since y is only defined for   0, we can write  = √ · 4 ln  = 2 √ ln . Then 0 = 2 · 1 2 √ ln  · 1 · ln  +  · 1  = ln √ ln + 1  . This agrees with our first answer since ln(4) + 4 2  ln(4) = 4 ln  + 4 2 √ · 4 ln  = 4(ln  + 1) 2 · 2 √ ln  = ln  + 1 √ ln  . 37.  = sintan √1 + 3  ⇒ 0 = costan √1 + 3 sec2 √1 + 3 322 √1 + 3  38.  = arctanarcsin √  ⇒ 0 = 1 1 + arcsin √ 2 · 1 √1 −  · 1 2 √ 39.  = tan2(sin ) = [tan(sin )]2 ⇒ 0 = 2[tan(sin )] · sec2(sin ) · cos  40.  =  − 1 ⇒ 0 +  = 0 ⇒  = 0 − 0 ⇒ 0 = (1 − ) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 3 REVIEW ¤ 277 41.  = √ + 1 (2 − )5 ( + 3)7 ⇒ ln  = 1 2 ln( + 1) + 5 ln(2 − ) − 7 ln( + 3) ⇒ 0 = 2(1+ 1) + 2−−5 −  + 3 7 ⇒ 0 = √ + 1 (2 − )5 ( + 3)7 2(1+ 1) − 2 −5  −  + 3 7  or 0 = (2 −2√)4(3+ 1 ( 2 −55 + 3)  −8 52). 42.  = ( + )4 4 + 4 ⇒ 0 = (4 + 4)(4)((+4 +)34−)2( + )4(43) = 4( +(4)3+(44−)2 3) 43.  =  sinh(2) ⇒ 0 =  cosh(2) · 2 + sinh(2) · 1 = 22 cosh(2) + sinh(2) 44.  = (sin ) ⇒ 0 = (cos  − sin )2 45.  = ln(cosh 3) ⇒ 0 = (1 cosh 3)(sinh 3)(3) = 3 tanh 3 46.  = ln  2 − 4 2 + 5  = ln 2 − 4  − ln |2 + 5| ⇒ 0 = 2 2 − 4 − 2 2 + 5 or 2( + 1)( + 4) ( + 2)( − 2)(2 + 5) 47.  = cosh−1(sinh ) ⇒ 0 = (sinh1)2 − 1 · cosh  = sinh cosh 2 − 1 48.  =  tanh−1√ ⇒ 0 = tanh−1√ +  1 1 − √ 2 1 2 √ = tanh−1√ + √ 2(1 − ) 49.  = cos√tan 3  ⇒ 0 = − sin√tan 3  · √tan 3 0 = − sin√tan 3  √tan 3 · 1 2(tan 3)−12 · sec2(3) · 3 = −3 sin√tan 3  √tan 3 sec2(3) 2 √tan 3 50.  = sin2cos √sin   = sincos √sin  2 ⇒ 0 = 2sincos √sin  sincos √sin  0 = 2 sincos √sin   coscos √sin  cos √sin  0 = 2 sincos √sin   coscos √sin − sin √sin √sin 0 = −2 sincos √sin   coscos √sin  sin √sin  · 1 2(sin )−12(sin )0 = − sincos √sin   coscos √sin   sin √sin  √sin  · cos  ·  = − sincos √sin   coscos √sin  sin √sin  cos  √sin  51. () = √4 + 1 ⇒  0() = 1 2(4 + 1)−12 · 4 = 2(4 + 1)−12 ⇒  00() = 2(− 1 2)(4 + 1)−32 · 4 = −4(4 + 1)32, so  00(2) = −4932 = − 27 4 . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.278 ¤ CHAPTER 3 DIFFERENTIATION RULES 52. () =  sin  ⇒ 0() =  cos  + sin  · 1 ⇒ 00() = (− sin ) + cos  · 1 + cos  = 2 cos  −  sin , so 00(6) = 2 cos(6) − (6) sin(6) = 2 √32 − (6)(12) = √3 − 12. 53. 6 + 6 = 1 ⇒ 65 + 650 = 0 ⇒ 0 = −55 ⇒ 00 = −5(54) − 5(540) (5)2 = − 544  − (−55) 10 = − 54 (6 + 6)5 6 = − 54 11 54. () = (2 − )−1 ⇒  0() = (2 − )−2 ⇒  00() = 2(2 − )−3 ⇒  000() = 2 · 3(2 − )−4 ⇒  (4)() = 2 · 3 · 4(2 − )−5. In general,  ()() = 2 · 3 · 4 · · · · · (2 − )−(+1) = ! (2 − )(+1) . 55. We first show it is true for  = 1: () =  ⇒  0() =  +  = ( + 1). We now assume it is true for  = :  ()() = ( + ). With this assumption, we must show it is true for  =  + 1:  (+1)() =    ()() =   [( + )] = ( + ) +  = [( + ) + 1] = [ + ( + 1)]. Therefore,  ()() = ( + ) by mathematical induction. 56. lim →0 3 tan3 2 = lim →0 3sin cos 3 322 = lim →0 cos3 2 · 1 8sin3 2 (2)3 = lim →0 cos3 2 8lim →0 sin 2 2  3 = 1 8 · 13 = 1 8 57.  = 4 sin2  ⇒ 0 = 4 · 2 sin  cos . At  6  1, 0 = 8 · 1 2 · √23 = 2 √3, so an equation of the tangent line is  − 1 = 2 √3  − 6 , or  = 2 √3  + 1 −  √33. 58.  = 2 − 1 2 + 1 ⇒ 0 = (2 + 1)(2(2) −+ 1) (22 − 1)(2) = (24+ 1)  2 . At (0 −1), 0 = 0, so an equation of the tangent line is  + 1 = 0( − 0), or  = −1. 59.  = √1 + 4 sin  ⇒ 0 = 1 2(1 + 4 sin )−12 · 4 cos  = √1 + 4 sin 2 cos   . At (0 1), 0 = √21 = 2, so an equation of the tangent line is  − 1 = 2( − 0), or  = 2 + 1. 60. 2 + 4 + 2 = 13 ⇒ 2 + 4(0 +  · 1) + 20 = 0 ⇒  + 20 + 2 + 0 = 0 ⇒ 20 + 0 = − − 2 ⇒ 0(2 + ) = − − 2 ⇒ 0 = − − 2 2 +  . At (2 1), 0 = −2 − 2 4 + 1 = − 4 5 , so an equation of the tangent line is  − 1 = − 4 5( − 2), or  = − 4 5 + 13 5 . The slope of the normal line is 5 4, so an equation of the normal line is  − 1 = 5 4( − 2), or  = 5 4 − 3 2. 61.  = (2 + )− ⇒ 0 = (2 + )(−−) + − · 1 = −[−(2 + ) + 1] = −(− − 1). At (0 2), 0 = 1(−1) = −1, so an equation of the tangent line is  − 2 = −1( − 0), or  = − + 2. The slope of the normal line is 1, so an equation of the normal line is  − 2 = 1( − 0), or  =  + 2. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 3 REVIEW ¤ 279 62. () = sin  ⇒  0() = [sin (cos )] + sin (1) = sin ( cos  + 1). As a check on our work, we notice from the graphs that  0()  0 when  is increasing. Also, we see in the larger viewing rectangle a certain similarity in the graphs of  and  0: the sizes of the oscillations of  and  0 are linked. 63. (a) () =  √5 −  ⇒  0() = 21(5 − )−12(−1) + √5 −  = 2 √−5−  + √5 −  · 22 √√5 5 − −   = 2 √−5−  + 22(5 √5−−) = − + 10 − 2 2 √5 −  = 10 − 3 2 √5 −  (b) At (1 2):  0(1) = 7 4 . So an equation of the tangent line is  − 2 = 7 4( − 1) or  = 7 4  + 1 4 . At (4 4):  0(4) = − 2 2 = −1. So an equation of the tangent line is  − 4 = −1( − 4) or  = − + 8. (c) (d) The graphs look reasonable, since  0 is positive where  has tangents with positive slope, and  0 is negative where  has tangents with negative slope. 64. (a) () = 4 − tan  ⇒  0() = 4 − sec2  ⇒  00() = −2 sec  (sec  tan ) = −2 sec2  tan . (b) We can see that our answers are reasonable, since the graph of  0 is 0 where  has a horizontal tangent, and the graph of  0 is positive where  has tangents with positive slope and negative where  has tangents with negative slope. The same correspondence holds between the graphs of  0 and  00. 65.  = sin  + cos  ⇒ 0 = cos  − sin  = 0 ⇔ cos  = sin  and 0 ≤  ≤ 2 ⇔  = 4 or 54 , so the points are  4  √2  and  54  −√2 . 66. 2 + 22 = 1 ⇒ 2 + 40 = 0 ⇒ 0 = −(2) = 1 ⇔  = −2. Since the points lie on the ellipse, we have (−2)2 + 22 = 1 ⇒ 62 = 1 ⇒  = ± √16 . The points are − √26  √16 and  √26  − √16. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.280 ¤ CHAPTER 3 DIFFERENTIATION RULES 67. () = ( − )( − )( − ) ⇒  0() = ( − )( − ) + ( − )( − ) + ( − )( − ). So  0() () = ( − )( − ) + ( − )( − ) + ( − )( − ) ( − )( − )( − ) = 1  −  + 1  −  + 1  −  . Or: () = ( − )( − )( − ) ⇒ ln |()| = ln | − | + ln | − | + ln | − | ⇒  0() () = 1  −  + 1  −  + 1  −  68. (a) cos 2 = cos2  − sin2  ⇒ −2 sin 2 = −2 cos  sin  − 2 sin  cos  ⇔ sin 2 = 2 sin  cos  (b) sin( + ) = sin  cos  + cos  sin  ⇒ cos( + ) = cos  cos  − sin  sin . 69. (a) () = () + () ⇒ 0() =  0() + 0() ⇒ 0(1) =  0(1) + 0(1) = 3 + 1 = 4 (b)  () = () () ⇒  0() = () 0() + ()  0() ⇒  0(2) = (2) 0(2) + (2) 0(2) = 1(4) + 1(2) = 4 + 2 = 6 (c) () = () () ⇒ 0() = ()  0([)(−)] 2() 0() ⇒ 0(1) = (1)  0(1) − (1) 0(1) [(1)]2 = 3(3) − 2(1) 32 = 9 − 2 9 = 7 9 (d) () = (()) ⇒ 0() =  0(()) 0() ⇒ 0(2) =  0((2)) 0(2) =  0(1) · 4 = 3 · 4 = 12 70. (a)  () = () () ⇒  0() = () 0() + ()  0() ⇒  0(2) = (2) 0(2) + (2)  0(2) = (1) 6 3− −0 0 + (4) 0 3− −3 0 = (1)(2) + (4)(−1) = 2 − 4 = −2 (b) () = () () ⇒ 0() = ()  0([)(−)] 2() 0() ⇒ 0(2) = (2)  0(2) − (2) 0(2) [(2)]2 = (4)(−1) − (1)(2) 42 = −6 16 = − 3 8 (c) () = (()) ⇒ 0() =  0(())0() ⇒ 0(2) =  0((2))0(2) =  0(4)0(2) =  6 5− −0 3(2) = (3)(2) = 6 71. () = 2() ⇒  0() = 20() + ()(2) = [0() + 2()] 72. () = (2) ⇒  0() = 0(2)(2) = 20(2) 73. () = [ ()]2 ⇒  0() = 2[ ()] · 0() = 2() 0() 74. () = (()) ⇒  0() = 0(()) 0() 75. () = () ⇒  0() = 0()  76. () = () ⇒  0() = ()0() 77. () = ln |()| ⇒  0() = 1 ()0() = 0(()) °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 3 REVIEW ¤ 281 78. () = (ln ) ⇒  0() = 0(ln ) · 1  = 0(ln )  79. () = () () () + () ⇒ 0() = [() + ()] [() 0() + ()  0()] − () () [ 0() + 0()] [() + ()]2 = [()]2 0() + () ()  0() + () () 0() + [ ()]2  0() − () ()  0() − () () 0() [() + ()]2 =  0() [ ()]2 + 0() [()]2 [() + ()]2 80. () = (()) ⇒ 0() = 20()(()) −() [ ()(0)] (2) =  0(2[)(()] )3−2()()0() 81. Using the Chain Rule repeatedly, () = ((sin 4)) ⇒ 0() =  0((sin 4)) ·   ((sin 4)) =  0((sin 4)) · 0(sin 4) ·   (sin 4) =  0((sin 4))0(sin 4)(cos 4)(4). 82. (a) (b) The average rate of change is larger on [2 3]. (c) The instantaneous rate of change (the slope of the tangent) is larger at  = 2. (d) () =  − 2 sin  ⇒  0() = 1 − 2 cos , so  0(2) = 1 − 2 cos 2 ≈ 18323 and  0(5) = 1 − 2 cos 5 ≈ 04327. So  0(2)   0(5), as predicted in part (c). 83.  = [ln( + 4)]2 ⇒ 0 = 2[ln( + 4)]1 · 1  + 4 · 1 = 2 ln( + 4 + 4) and 0 = 0 ⇔ ln( + 4) = 0 ⇔  + 4 = 0 ⇒  + 4 = 1 ⇔  = −3, so the tangent is horizontal at the point (−3 0). 84. (a) The line  − 4 = 1 has slope 1 4. A tangent to  =  has slope 1 4 when 0 =  = 1 4 ⇒  = ln 1 4 = − ln 4. Since  = , the -coordinate is 1 4 and the point of tangency is − ln 4 1 4. Thus, an equation of the tangent line is  − 1 4 = 1 4( + ln 4) or  = 1 4 + 1 4(ln 4 + 1). (b) The slope of the tangent at the point ( ) is      =  = . Thus, an equation of the tangent line is  −  = ( − ). We substitute  = 0,  = 0 into this equation, since we want the line to pass through the origin: 0 −  = (0 − ) ⇔ − = (−) ⇔  = 1. So an equation of the tangent line at the point ( ) = (1 ) is  −  = ( − 1) or  = . 85.  = () = 2 +  +  ⇒  0() = 2 + . We know that  0(−1) = 6 and  0(5) = −2, so −2 +  = 6 and 10 +  = −2. Subtracting the first equation from the second gives 12 = −8 ⇒  = − 2 3. Substituting − 2 3 for  in the first equation gives  = 14 3 . Now (1) = 4 ⇒ 4 =  +  + , so  = 4 + 2 3 − 14 3 = 0 and hence, () = − 2 32 + 14 3 . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.282 ¤ CHAPTER 3 DIFFERENTIATION RULES 86. (a) lim →∞ () = lim →∞ [(− − −)] =  lim →∞ (− − −) = (0 − 0) = 0 because − → −∞ and − → −∞ as  → ∞. (b) () = (− − −) ⇒  0() = (−(−) − −(−)) = (−− + −) (c)  0() = 0 ⇔ − = − ⇔   = (−+) ⇔ ln   = ( − ) ⇔  = ln()  −  87. () = − cos( + ) ⇒ () = 0() = {− [− sin( + )] + cos( + )(−−)} = −− [ sin( + ) +  cos( + )] ⇒ () = 0() = −{−[2 cos( + ) −  sin( + )] + [ sin( + ) +  cos( + )](−−)} = −−[2 cos( + ) −  sin( + ) −  sin( + ) − 2 cos( + )] = −−[(2 − 2) cos( + ) − 2 sin( + )] = −[(2 − 2) cos( + ) + 2 sin( + )] 88. (a)  = √2 + 2 2 ⇒ () = 0 = 12 √2 + 2 2  22 = 2√2 + 2 2 ⇒ () = 0() = 2 √2 + 2 2 − 22√2 + 2 2  2 + 2 2 = 22 (2 + 2 2)32 (b) ()  0 for   0, so the particle always moves in the positive direction. 89. (a)  = 3 − 12 + 3 ⇒ () = 0 = 32 − 12 ⇒ () = 0() = 6 (b) () = 3(2 − 4)  0 when   2, so it moves upward when   2 and downward when 0 ≤   2. (c) Distance upward = (3) − (2) = −6 − (−13) = 7, Distance downward = (0) − (2) = 3 − (−13) = 16. Total distance = 7 + 16 = 23. (d) (e) The particle is speeding up when  and  have the same sign, that is, when   2. The particle is slowing down when  and  have opposite signs; that is, when 0    2. 90. (a)  = 1 32 ⇒  = 1 32 [ constant] (b)  = 1 32 ⇒  = 2 3 [ constant] 91. The linear density  is the rate of change of mass  with respect to length .  = 1 + √  =  + 32 ⇒  =  = 1 + 3 2√, so the linear density when  = 4 is 1 + 3 2√4 = 4 kgm. 92. (a) () = 920 + 2 − 0022 + 0000073 ⇒  0() = 2 − 004 + 0000212 (b)  0(100) = 2 − 4 + 21 = $010unit. This value represents the rate at which costs are increasing as the hundredth unit is produced, and is the approximate cost of producing the 101st unit. (c) The cost of producing the 101st item is (101) − (100) = 99010107 − 990 = $010107, slightly larger than  0(100). °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 3 REVIEW ¤ 283 93. (a) () = (0) = 200 ⇒ (05) = 20005 = 360 ⇒ 05 = 18 ⇒ 05 = ln 18 ⇒  = 2 ln 18 = ln(18)2 = ln 324 ⇒ () = 200(ln 324) = 200(324) (b) (4) = 200(324)4 ≈ 22,040 bacteria (c) 0() = 200(324) · ln 324, so 0(4) = 200(324)4 · ln 324 ≈ 25,910 bacteria per hour (d) 200(324) = 10,000 ⇒ (324) = 50 ⇒  ln 324 = ln 50 ⇒  = ln 50 ln 324 ≈ 333 hours 94. (a) If () is the mass remaining after  years, then () = (0) = 100. (524) = 100524 = 1 2 · 100 ⇒ 524 = 1 2 ⇒ 524 = − ln 2 ⇒  = − 5124 ln 2 ⇒ () = 100−(ln 2)524 = 100 · 2−524. Thus, (20) = 100 · 2−20524 ≈ 71 mg. (b) 100 · 2−524 = 1 ⇒ 2−524 = 1 100 ⇒ −  524 ln 2 = ln 100 1 ⇒  = 524 ln 100 ln 2 ≈ 348 years 95. (a) 0() = −() ⇒ () = (0)− by Theorem 3.8.2. But (0) = 0, so () = 0−. (b) (30) = 1 20 since the concentration is reduced by half. Thus, 1 20 = 0−30 ⇒ ln 1 2 = −30 ⇒  = − 1 30 ln 1 2 = 30 1 ln 2. Since 10% of the original concentration remains if 90% is eliminated, we want the value of  such that () = 10 1 0. Therefore, 10 1 0 = 0−(ln 2)30 ⇒ ln 01 = −(ln 2)30 ⇒  = − ln 2 30 ln 01 ≈ 100 h. 96. (a) If  =  − 20, (0) = 80 ⇒ (0) = 80 − 20 = 60, and the initial-value problem is  =  with (0) = 60. So the solution is () = 60. Now (05) = 60(05) = 60 − 20 ⇒ 05 = 40 60 = 2 3 ⇒  = 2 ln 2 3 = ln 4 9, so () = 60(ln 49) = 60( 4 9). Thus, (1) = 60( 4 9)1 = 80 3 = 26 2 3 ◦C and (1) = 46 2 3 ◦C. (b) () = 40 ⇒ () = 20. () = 6049 = 20 ⇒ 4 9 = 13 ⇒  ln 49 = ln 13 ⇒  = ln ln 1 3 4 9 ≈ 135 h or 813 min. 97. If  = edge length, then  = 3 ⇒  = 32  = 10 ⇒  = 10(32) and  = 62 ⇒  = (12)  = 12[10(32)] = 40. When  = 30,  = 40 30 = 4 3 cm2min. 98. Given  = 2, find  when  = 5.  = 1 32 and, from similar triangles,   = 3 10 ⇒  =  3 310 2  = 100 3 3, so 2 =   = 9 100 2   ⇒   = 200 92 = 200 9 (5)2 = 8 9 cms when  = 5. 99. Given  = 5 and  = 15, find . 2 = 2 + 2 ⇒ 2   = 2   + 2   ⇒   = 1(15 + 5). When  = 3,  = 45 + 3(5) = 60 and  = 15(3) = 45 ⇒  = √452 + 602 = 75, so   = 1 75[15(45) + 5(60)] = 13 fts. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.284 ¤ CHAPTER 3 DIFFERENTIATION RULES 100. We are given  = 30 fts. By similar triangles,   = 4 √241 ⇒  = 4 √241, so   = 4 √241   = 120 √241 ≈ 77 fts. 101. We are given  = −025 radh. tan  = 400 ⇒  = 400 cot  ⇒   = −400 csc2    . When  = 6 ,   = −400(2)2(−025) = 400 fth. 102. (a) () = √25 − 2 ⇒  0() = −2 2 √25 − 2 = −(25 − 2)−12. So the linear approximation to () near 3 is () ≈ (3) +  0(3)( − 3) = 4 − 3 4( − 3). (b) (c) For the required accuracy, we want √25 − 2 − 01  4 − 3 4( − 3) and 4 − 3 4( − 3)  √25 − 2 + 01. From the graph, it appears that these both hold for 224    366. 103. (a) () = √3 1 + 3 = (1 + 3)13 ⇒  0() = (1 + 3)−23, so the linearization of  at  = 0 is () = (0) +  0(0)( − 0) = 113 + 1−23 = 1 + . Thus, √3 1 + 3 ≈ 1 +  ⇒ √3 103 = 3 1 + 3(001) ≈ 1 + (001) = 101. (b) The linear approximation is √3 1 + 3 ≈ 1 + , so for the required accuracy we want √3 1 + 3 − 01  1 +   √3 1 + 3 + 01. From the graph, it appears that this is true when −0235    0401. 104.  = 3 − 22 + 1 ⇒  = (32 − 4) . When  = 2 and  = 02,  = 3(2)2 − 4(2)(02) = 08. 105.  = 2 + 1 2 1 22 = 1 + 8 2 ⇒  = 2 + 4  . When  = 60 and  = 01,  = 2 + 4 60(01) = 12 + 32, so the maximum error is approximately 12 + 32 ≈ 167 cm2. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 3 REVIEW ¤ 285 106. lim →1 17 − 1  − 1 =   17 = 1 = 17(1)16 = 17 107. lim →0 √4 16 +  − 2  =   √4  = 16 = 1 4−34    = 16 = 4√4116 3 = 32 1 108. lim →3 cos  − 05  − 3 =   cos  = 3 = − sin 3 = −√23 109. lim →0 √1 + tan  − √1 + sin  3 = lim →0 √1 + tan  − √1 + sin  √1 + tan  + √1 + sin   3 √1 + tan  + √1 + sin   = lim →0 (1 + tan ) − (1 + sin ) 3√1 + tan  + √1 + sin   = lim →0 3√1 + tan sin  (1cos + √ 1 + sin − 1)   · cos cos  = lim →0 sin  (1 − cos ) 3√1 + tan  + √1 + sin   cos  · 1 + cos  1 + cos  = lim →0 sin  · sin2  3√1 + tan  + √1 + sin   cos  (1 + cos ) = lim →0 sin3 lim →0 √1 + tan  + √1 + sin 1   cos  (1 + cos ) = 13 · √1 + √1 1· 1 · (1 + 1) = 14 110. Differentiating the first given equation implicitly with respect to  and using the Chain Rule, we obtain (()) =  ⇒  0(()) 0() = 1 ⇒ 0() = 1  0(()). Using the second given equation to expand the denominator of this expression gives 0() = 1 1 + [(())]2 . But the first given equation states that (()) = , so 0() = 1 +12 . 111.   [(2)] = 2 ⇒  0(2) · 2 = 2 ⇒  0(2) = 1 22. Let  = 2. Then  0() = 1 2 1 22 = 1 82, so  0() = 1 82. 112. Let ( ) be on the curve, that is, 23 + 23 = 23. Now 23 + 23 = 23 ⇒ 2 3−13 + 2 3−13   = 0, so   = − 13 13 = −  13, so at ( ) the slope of the tangent line is −()13 and an equation of the tangent line is  −  = −()13( − ) or  = −()13 + ( + 2313). Setting  = 0, we find that the -intercept is 1323 +  = 13(23 + 23) = 1323 and setting  = 0 we find that the -intercept is  + 2313 = 13(23 + 23) = 1323. So the length of the tangent line between these two points is (1323)2 + (1323)2 = √2343 + 2343 = (23 + 23)43 = √2343 = √2 =  = constant °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.286 ¤ CHAPTER 3 DIFFERENTIATION RULES °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.PROBLEMS PLUS 1. Let  be the -coordinate of . Since the derivative of  = 1 − 2 is 0 = −2, the slope at  is −2. But since the triangle is equilateral,  = √31, so the slope at  is −√3. Therefore, we must have that −2 = −√3 ⇒  = √23. Thus, the point  has coordinates  √23 1 −  √232 =  √23 1 4 and by symmetry,  has coordinates − √23 1 4. 2.  = 3 − 3 + 4 ⇒ 0 = 32 − 3, and  = 3(2 − ) ⇒ 0 = 6 − 3. The slopes of the tangents of the two curves are equal when 32 − 3 = 6 − 3; that is, when  = 0 or 2. At  = 0, both tangents have slope −3, but the curves do not intersect. At  = 2, both tangents have slope 9 and the curves intersect at (2 6). So there is a common tangent line at (2 6),  = 9 − 12. 3. We must show that  (in the figure) is halfway between  and , that is,  = ( + )2. For the parabola  = 2 +  + , the slope of the tangent line is given by 0 = 2 + . An equation of the tangent line at  =  is  − (2 +  + ) = (2 + )( − ). Solving for  gives us  = (2 + ) − 22 −  + (2 +  + ) or  = (2 + ) +  − 2 (1) Similarly, an equation of the tangent line at  =  is  = (2 + ) +  − 2 (2) We can eliminate  and solve for  by subtracting equation (1) from equation (2). [(2 + ) − (2 + )] − 2 + 2 = 0 (2 − 2) = 2 − 2 2( − ) = (2 − 2)  = ( + )( − ) 2( − ) =  +  2 Thus, the -coordinate of the point of intersection of the two tangent lines, namely , is ( + )2. 4. We could differentiate and then simplify or we can simplify and then differentiate. The latter seems to be the simpler method. sin2  1 + cot  + cos2  1 + tan  = sin2  1 + cos  sin  · sin  sin  + cos2  1 + sin  cos  · cos  cos  = sin3  sin  + cos  + cos3  cos  + sin = sin3  + cos3  sin  + cos  [factor sum of cubes] = (sin  + cos )(sin2  − sin cos  + cos2 ) sin  + cos  = sin2  − sin  cos  + cos2  = 1 − sin  cos  = 1 − 1 2(2 sin  cos ) = 1 − 1 2 sin 2 Thus,   1 + cot sin2  + 1 + tan cos2  =   1 − 1 2 sin 2 = − 1 2 cos 2 · 2 = − cos 2. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. 287 NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.288 ¤ CHAPTER 3 PROBLEMS PLUS 5. Using  0() = lim → () − ()  −  , we recognize the given expression, () = lim → sec  − sec   −  , as 0() with () = sec . Now  0( 4 ) = 00( 4 ), so we will find 00(). 0() = sec  tan  ⇒ 00() = sec  sec2  + tan  sec  tan  = sec (sec2  + tan2 ), so 00( 4 ) = √2(√22 + 12) = √2(2 + 1) = 3√2. 6. Using  0(0) = lim →0 () − (0)  − 0 , we see that for the given equation, lim →0 √3  +  − 2  = 5 12 , we have () = √3  + , (0) = 2, and  0(0) = 12 5 . Now (0) = 2 ⇔ √3  = 2 ⇔  = 8. Also  0() = 1 3( + )−23 · , so  0(0) = 12 5 ⇔ 1 3(8)−23 ·  = 12 5 ⇔ 1 3( 1 4) = 12 5 ⇔  = 5. 7. Let  = tan−1 . Then tan  = , so from the triangle we see that sin(tan−1 ) = sin  = √1 +  2  Using this fact we have that sin(tan−1(sinh )) = 1 + sinh sinh  2  = cosh sinh  = tanh . Hence, sin−1(tanh ) = sin−1(sin(tan−1(sinh ))) = tan−1(sinh ). 8. We find the equation of the parabola by substituting the point (−100 100), at which the car is situated, into the general equation  = 2: 100 = (−100)2 ⇒  = 100 1 . Now we find the equation of a tangent to the parabola at the point (0 0). We can show that 0 = (2) = 100 1 (2) = 50 1 , so an equation of the tangent is  − 0 = 50 1 0( − 0). Since the point (0 0) is on the parabola, we must have 0 = 100 1 2 0, so our equation of the tangent can be simplified to  = 100 1 2 0 + 50 1 0( − 0). We want the statue to be located on the tangent line, so we substitute its coordinates (100 50) into this equation: 50 = 100 1 2 0 + 50 1 0(100 − 0) ⇒ 2 0 − 2000 + 5000 = 0 ⇒ 0 = 1 2200 ± 2002 − 4(5000)  ⇒ 0 = 100 ± 50 √2. But 0  100, so the car’s headlights illuminate the statue when it is located at the point 100 − 50 √2 150 − 100 √2  ≈ (293 86), that is, about 293 m east and 86 m north of the origin. 9. We use mathematical induction. Let  be the statement that   (sin4  + cos4 ) = 4−1 cos(4 + 2). 1 is true because   (sin4  + cos4 ) = 4 sin3  cos  − 4 cos3  sin  = 4 sin  cos  sin2  − cos2   = −4 sin  cos  cos 2 = −2 sin 2 cos 2 = − sin 4 = sin(−4) = cos 2 − (−4) = cos 2 + 4 = 4−1 cos4 +  2  when  = 1 [continued] °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 3 PROBLEMS PLUS ¤ 289 Now assume  is true, that is,   sin4  + cos4  = 4−1 cos4 +  2 . Then +1 +1 (sin4  + cos4 ) =     (sin4  + cos4 ) =   4−1 cos4 +  2  = −4−1 sin4 +  2  ·   4 +  2  = −4 sin4 +  2  = 4 sin−4 −  2  = 4 cos 2 − −4 −  2  = 4 cos4 + ( + 1) 2  which shows that +1 is true. Therefore,   (sin4  + cos4 ) = 4−1 cos4 +  2  for every positive integer , by mathematical induction. Another proof: First write sin4  + cos4  = (sin2  + cos2 )2 − 2 sin2  cos2  = 1 − 1 2 sin2 2 = 1 − 1 4(1 − cos 4) = 3 4 + 1 4 cos 4 Then we have   (sin4  + cos4 ) =    3 4 + 14 cos 4 = 14 · 4 cos4 + 2  = 4−1 cos4 + 2 . 10. lim → () − () √ − √ = lim → √() − −  √() · √√  + + √ √   = lim → () − −  () · √ + √  = lim → () − ()  −  · lim → √ + √  =  0() · √ + √  = 2 √  0() 11. We must find a value 0 such that the normal lines to the parabola  = 2 at  = ±0 intersect at a point one unit from the points ±0 2 0. The normals to  = 2 at  = ±0 have slopes −±210 and pass through ±0 2 0 respectively, so the normals have the equations  − 2 0 = − 1 20 ( − 0) and  − 2 0 = 1 20 ( + 0). The common -intercept is 2 0 + 1 2 . We want to find the value of 0 for which the distance from 0 2 0 + 1 2 to 0 2 0 equals 1. The square of the distance is (0 − 0)2 + 2 0 − 2 0 + 1 22 = 2 0 + 1 4 = 1 ⇔ 0 = ± √23. For these values of 0, the -intercept is 2 0 + 1 2 = 5 4, so the center of the circle is at 0 5 4. Another solution: Let the center of the circle be (0 ). Then the equation of the circle is 2 + ( − )2 = 1. Solving with the equation of the parabola,  = 2, we get 2 + (2 − )2 = 1 ⇔ 2 + 4 − 22 + 2 = 1 ⇔ 4 + (1 − 2)2 + 2 − 1 = 0. The parabola and the circle will be tangent to each other when this quadratic equation in 2 has equal roots; that is, when the discriminant is 0. Thus, (1 − 2)2 − 4(2 − 1) = 0 ⇔ 1 − 4 + 42 − 42 + 4 = 0 ⇔ 4 = 5, so  = 5 4. The center of the circle is 0 5 4. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.290 ¤ CHAPTER 3 PROBLEMS PLUS 12. See the figure. The parabolas  = 42 and  =  + 22 intersect each other at right angles at the point ( ) if and only if ( ) satisfies both equations and the tangent lines at ( ) are perpendicular.  = 42 ⇒ 0 = 8 and  =  + 22 ⇒ 1 = 4 0 ⇒ 0 = 1 4 , so at ( ) we must have 8 = − 1 1(4) ⇒ 8 = −4 ⇒  = −2. Since ( ) is on both parabolas, we have (1)  = 42 and (2)  =  + 22. Substituting −2 for  in (1) gives us −2 = 42 ⇒ 42 + 2 = 0 ⇒ 2(2 + 1) = 0 ⇒  = 0 or  = − 1 2. If  = 0, then  = 0 and  = 0, and the tangent lines at (0 0) are  = 0 and  = 0. If  = − 1 2, then  = −2− 1 2 = 1 and − 1 2 =  + 2(1)2 ⇒  = − 5 2, and the tangent lines at − 1 2 1 are  − 1 = −4 + 1 2 [or  = −4 − 1] and  − 1 = 1 4 + 1 2 or  = 1 4 + 9 8. 13. See the figure. Clearly, the line  = 2 is tangent to both circles at the point (0 2). We’ll look for a tangent line  through the points ( ) and ( ), and if such a line exists, then its reflection through the -axis is another such line. The slope of  is the same at ( ) and ( ). Find those slopes: 2 + 2 = 4 ⇒ 2 + 2 0 = 0 ⇒ 0 = −  = −  and 2 + ( − 3)2 = 1 ⇒ 2 + 2( − 3)0 = 0 ⇒ 0 = −   − 3 = − − 3. Now an equation for  can be written using either point-slope pair, so we get  −  = −  ( − ) or  = −  + 2 +  and  −  = −   − 3( − ) or  = − − 3  +  −2 3 + . The slopes are equal, so − = − − 3 ⇔  − 3 =   . Since ( ) is a solution of 2 + ( − 3)2 = 1 we have 2 + ( − 3)2 = 1, so 2 +   2 = 1 ⇒ 22 + 22 = 2 ⇒ 2(2 + 2) = 2 ⇒ 42 = 2 [since ( ) is a solution of 2 + 2 = 4] ⇒  = 2. Now  − 3 =   ⇒  = 3 +  2 , so  = 3 +  2 . The -intercepts are equal, so 2  +  =  −2 3 +  ⇔ 2  +  = ( 2) 2 2 + 3 + 2  ⇔  2 +  = 22 + 3 + 2  (2) ⇔ 22 + 22 = 2 + 6 + 2 ⇔ 2 + 2 = 6 ⇔ 4 = 6 ⇔  = 2 3. It follows that  = 3 + 2 = 10 3 , 2 = 4 − 2 = 4 − 4 9 = 32 9 ⇒  = 4 3√2, and 2 = 1 − ( − 3)2 = 1 −  1 32 = 8 9 ⇒  = 2 3√2. Thus,  has equation  − 23 = −(423) 3√2  − 43√2  ⇔  − 2 3 = −2√2  − 4 3√2 ⇔  = −2√2  + 6. Its reflection has equation  = 2√2  + 6. [continued] °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 3 PROBLEMS PLUS ¤ 291 In summary, there are three lines tangent to both circles:  = 2 touches at (0 2),  touches at  4 3√2 2 3 and  2 3√2 10 3 , and its reflection through the -axis touches at − 4 3√2 2 3 and − 2 3√2 10 3 . 14. () = 46 + 45 + 2 1 +  = 45( + 1) + 2  + 1 = 45( + 1)  + 1 + 2  + 1 = 45 + 2( + 1)−1, so  (46)() = (45)(46) + 2 ( + 1)−1(46). The forty-sixth derivative of any forty-fifth degree polynomial is 0, so (45)46 = 0. Thus,  (46)() = 2 (−1)(−2)(−3) · · · (−46)( + 1)−47 = 2(46!)( + 1)−47 and  (46)(3) = 2(46!)(4)−47 or (46!)2−93. 15. We can assume without loss of generality that  = 0 at time  = 0, so that  = 12 rad. [The angular velocity of the wheel is 360 rpm = 360 · (2 rad)(60 s) = 12 rads.] Then the position of  as a function of time is  = (40 cos  40 sin ) = (40 cos 12 40 sin 12), so sin  =  12 m = 40 sin  120 = sin  3 = 1 3 sin 12. (a) Differentiating the expression for sin , we get cos  ·   = 1 3 · 12 · cos 12 = 4 cos . When  =  3 , we have sin  = 1 3 sin  = √3 6 , so cos  = 1 − √632 = 11 12 and   = 4cos cos 3 = 11 212 = 4√11 √3 ≈ 656 rads. (b) By the Law of Cosines, | |2 = ||2 + ||2 − 2 || || cos  ⇒ 1202 = 402 + ||2 − 2 · 40 | | cos  ⇒ ||2 − (80 cos ) | | − 12,800 = 0 ⇒ || = 1 280 cos  ± √6400 cos2  + 51,200  = 40 cos  ± 40 √cos2  + 8 = 40cos  + √8 + cos2   cm [since | |  0]. As a check, note that || = 160 cm when  = 0 and | | = 80 √2 cm when  = 2 . (c) By part (b), the -coordinate of  is given by  = 40cos  + √8 + cos2  , so   =     = 40− sin  − 22 cos √8 + cos  sin2  · 12 = −480 sin 1 + √8 + cos cos  2   cms. In particular,  = 0 cms when  = 0 and  = −480 cms when  = 2 . 16. The equation of 1 is  − 2 1 = 21( − 1) = 21 − 22 1 or  = 21 − 2 1. The equation of 2 is  = 22 − 2 2. Solving for the point of intersection, we get 2(1 − 2) = 2 1 − 2 2 ⇒  = 1 2(1 + 2). Therefore, the coordinates of  are  1 2(1 + 2) 12. So if the point of contact of  is  2, then 1 is  1 2( + 1) 1 and 2 is  1 2( + 2) 2. Therefore, | 1|2 = 1 4( − 2)2 + 2 1( − 2)2 = ( − 2)2 1 4 + 2 1 and | 1|2 = 1 4(1 − 2)2 + 2 1(1 − 2)2 = (1 − 2)2 1 4 + 2 1. So | 1|2 | 1|2 = ( − 2)2 (1 − 2)2 , and similarly ||   22||22 = ((11−−2))22 . Finally, ||   11|| + ||   22|| = 1−−22 + 11−−2 = 1. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.292 ¤ CHAPTER 3 PROBLEMS PLUS 17. Consider the statement that   ( sin ) =  sin( + ). For  = 1,   ( sin ) =  sin  +  cos , and  sin( + ) = [sin  cos  + cos  sin ] =  sin  +  cos  =  sin  +  cos  since tan  =   ⇒ sin  =   and cos  =   . So the statement is true for  = 1. Assume it is true for  = . Then +1 +1 ( sin ) =    sin( + ) =  sin( + ) +  cos( + ) = [ sin( + ) +  cos( + )] But sin[ + ( + 1)] = sin[( + ) + ] = sin( + ) cos  + sin  cos( + ) =  sin( + ) +  cos( + ). Hence,  sin( + ) +  cos( + ) =  sin[ + ( + 1)]. So +1 +1 ( sin ) = [ sin(+)+ cos(+)] = [ sin(+(+1))] = +1[sin(+( +1))]. Therefore, the statement is true for all  by mathematical induction. 18. We recognize this limit as the definition of the derivative of the function () = sin  at  = , since it is of the form lim → () − ()  −  . Therefore, the limit is equal to  0() = (cos )sin  = −1 · 0 = −1. 19. It seems from the figure that as  approaches the point (0 2) from the right,  → ∞ and  → 2+. As  approaches the point (3 0) from the left, it appears that  → 3+ and  → ∞. So we guess that  ∈ (3 ∞) and  ∈ (2 ∞). It is more difficult to estimate the range of values for  and . We might perhaps guess that  ∈ (0 3), and  ∈ (−∞ 0) or (−2 0). In order to actually solve the problem, we implicitly differentiate the equation of the ellipse to find the equation of the tangent line: 2 9 + 2 4 = 1 ⇒ 29 + 24 0 = 0, so 0 = −4 9  . So at the point (0 0) on the ellipse, an equation of the tangent line is  − 0 = −4 9 0 0 ( − 0) or 40 + 90 = 42 0 + 902. This can be written as 0 9 + 0 4 = 2 0 9 + 02 4 = 1, because (0 0) lies on the ellipse. So an equation of the tangent line is 0 9 + 0 4 = 1. Therefore, the -intercept  for the tangent line is given by 0 9 = 1 ⇔  = 9 0 , and the -intercept  is given by 0 4 = 1 ⇔  = 40 . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 3 PROBLEMS PLUS ¤ 293 So as 0 takes on all values in (0 3),  takes on all values in (3 ∞), and as 0 takes on all values in (0 2),  takes on all values in (2 ∞). At the point (0 0) on the ellipse, the slope of the normal line is − 1 0(0 0) = 9 4 0 0 , and its equation is  − 0 = 9 4 0 0 ( − 0). So the -intercept  for the normal line is given by 0 − 0 = 9 4 0 0 ( − 0) ⇒  = − 40 9 + 0 = 50 9 , and the -intercept  is given by  − 0 = 9 4 0 0 (0 − 0) ⇒  = −90 4 + 0 = − 50 4 . So as 0 takes on all values in (0 3),  takes on all values in 0 5 3, and as 0 takes on all values in (0 2),  takes on all values in − 5 2 0. 20. lim →0 sin(3 + )2 − sin 9  =  0(3) where () = sin 2. Now  0() = (cos 2)(2), so  0(3) = 6 cos 9. 21. (a) If the two lines 1 and 2 have slopes 1 and 2 and angles of inclination 1 and 2, then 1 = tan 1 and 2 = tan 2. The triangle in the figure shows that 1 +  + (180◦ − 2) = 180◦ and so  = 2 − 1. Therefore, using the identity for tan( − ), we have tan  = tan(2 − 1) = tan 2 − tan 1 1 + tan 2 tan 1 and so tan  = 1 + 2 −112 . (b) (i) The parabolas intersect when 2 = ( − 2)2 ⇒  = 1. If  = 2, then 0 = 2, so the slope of the tangent to  = 2 at (1 1) is 1 = 2(1) = 2. If  = ( − 2)2, then 0 = 2( − 2), so the slope of the tangent to  = ( − 2)2 at (1 1) is 2 = 2(1 − 2) = −2. Therefore, tan  = 2 − 1 1 + 12 = −2 − 2 1 + 2(−2) = 4 3 and so  = tan−1 4 3 ≈ 53◦ [or 127◦]. (ii) 2 − 2 = 3 and 2 − 4 + 2 + 3 = 0 intersect when 2 − 4 + (2 − 3) + 3 = 0 ⇔ 2( − 2) = 0 ⇒  = 0 or 2, but 0 is extraneous. If  = 2, then  = ±1. If 2 − 2 = 3 then 2 − 20 = 0 ⇒ 0 =  and 2 − 4 + 2 + 3 = 0 ⇒ 2 − 4 + 20 = 0 ⇒ 0 = 2 −   . At (2 1) the slopes are 1 = 2 and 2 = 0, so tan  = 1 + 2 0 − 2· 0 = −2 ⇒  ≈ 117◦. At (2 −1) the slopes are 1 = −2 and 2 = 0 so tan  = 0 − (−2) 1 + (−2)(0) = 2 ⇒  ≈ 63◦ [or 117◦]. 22. 2 = 4 ⇒ 20 = 4 ⇒ 0 = 2 ⇒ slope of tangent at (1 1) is 1 = 21. The slope of  is 2 = 1 1 −  , so by the formula from Problem 19(a), tan  = 1 1 −  − 2 1 1 + 21 1−1  · 1 (1 − ) 1 (1 − ) = 12 − 2(1 − ) 1(1 − ) + 21 = 41 − 21 + 22 11 − 1 + 21 = 2( + 1) 1( + 1) = 2 1 = slope of tangent at  = tan  Since 0 ≤ ,  ≤ 2 , this proves that  = . °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.294 ¤ CHAPTER 3 PROBLEMS PLUS 23. Since ∠ = ∠ = , the triangle  is isosceles, so || = || = . By the Law of Cosines, 2 = 2 + 2 − 2 cos . Hence, 2 cos  = 2, so  = 2 2 cos  =  2 cos . Note that as  → 0+,  → 0+ (since sin  = ), and hence  →  2 cos 0 =  2 . Thus, as  is taken closer and closer to the -axis, the point  approaches the midpoint of the radius . 24. lim →0 () () = lim →0 (()) −− 00 = lim →0 ( ( ) ) − −  (0) (0) = lim →0 () − (0)  − 0 () − (0)  − 0 = lim →0 () − (0)  − 0 lim →0 () − (0)  − 0 =  0(0) 0(0) 25. lim →0 sin( + 2) − 2 sin( + ) + sin  2 = lim →0 sin  cos 2 + cos  sin 2 − 2 sin  cos  − 2 cos  sin  + sin  2 = lim →0 sin  (cos 2 − 2 cos  + 1) + cos  (sin 2 − 2 sin ) 2 = lim →0 sin  (2 cos2  − 1 − 2 cos  + 1) + cos  (2 sin  cos  − 2 sin ) 2 = lim →0 sin  (2 cos )(cos  − 1) + cos  (2 sin)(cos  − 1) 2 = lim →0 2(cos  − 1)[sin  cos  + cos  sin ](cos  + 1) 2(cos  + 1) = lim →0 −2 sin2  [sin( + )] 2(cos  + 1) = −2 lim →0 sin2 · sin( cos++ 1 ) = −2(1)2 sin( cos 0 + 1  + 0) = − sin  26. (a) () = ( − 2)( − 6) = 3 − 82 + 12 ⇒  0() = 32 − 16 + 12. The average of the first pair of zeros is (0 + 2)2 = 1. At  = 1, the slope of the tangent line is  0(1) = −1, so an equation of the tangent line has the form  = −1 + . Since (1) = 5, we have 5 = −1 +  ⇒  = 6 and the tangent has equation  = − + 6. Similarly, at  = 0 + 6 2 = 3,  = −9 + 18; at  = 2 + 6 2 = 4,  = −4. From the graph, we see that each tangent line drawn at the average of two zeros intersects the graph of  at the third zero. (b) A CAS gives  0() = ( − )( − ) + ( − )( − ) + ( − )( − ) or  0() = 32 − 2( +  + ) +  +  + . Using the Simplify command, we get  0 +2  = −( −4 )2 and  +2  = −( −8 )2 ( +  − 2), so an equation of the tangent line at  =  +2  °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 3 PROBLEMS PLUS ¤ 295 is  = −( − )2 4  −  +2  − ( −8 )2 ( +  − 2). To find the -intercept, let  = 0 and use the Solve command. The result is  =  Using Derive, we can begin by authoring the expression ( − )( − )( − ). Now load the utility file DifferentiationApplications. Next we author tangent (#1  ( + )2)—this is the command to find an equation of the tangent line of the function in #1 whose independent variable is  at the -value ( + )2. We then simplify that expression and obtain the equation  = #4. The form in expression #4 makes it easy to see that the -intercept is the third zero, namely . In a similar fashion we see that  is the -intercept for the tangent line at ( + )2 and  is the -intercept for the tangent line at ( + )2. 27. Let () = 2 and () =  √ [  0]. From the graphs of  and , we see that  will intersect  exactly once when  and  share a tangent line. Thus, we must have  =  and  0 = 0 at  = . () = () ⇒ 2 =  √ () and  0() = 0() ⇒ 22 =  2 √ ⇒ 2 = 4 √ . So we must have  √ =  4 √ ⇒ √ 2 = 4 ⇒  = 1 4. From (), 2(14) =  14 ⇒  = 212 = 2 √ ≈ 3297. 28. We see that at  = 0, () =  = 1 +  = 1, so if  =  is to lie above  = 1 + , the two curves must just touch at (0 1), that is, we must have  0(0) = 1. [To see this analytically, note that  ≥ 1 +  ⇒  − 1 ≥  ⇒  − 1  ≥ 1 for   0, so  0(0) = lim →0+  − 1  ≥ 1. Similarly, for   0,  − 1 ≥  ⇒  − 1  ≤ 1, so  0(0) = lim →0−  − 1  ≤ 1. [continued] °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.296 ¤ CHAPTER 3 PROBLEMS PLUS Since 1 ≤  0(0) ≤ 1, we must have  0(0) = 1.] But  0() =  ln  ⇒  0(0) = ln , so we have ln  = 1 ⇔  = . Another method: The inequality certainly holds for  ≤ −1, so consider   −1,  6= 0. Then  ≥ 1 +  ⇒  ≥ (1 + )1 for   0 ⇒  ≥ lim →0+ (1 + )1 = , by Equation 3.6.5. Also,  ≥ 1 +  ⇒  ≤ (1 + )1 for   0 ⇒  ≤ lim →0− (1 + )1 = . So since  ≤  ≤ , we must have  = . 29.  = √2− 1 − √22− 1 arctan  + √2sin −1 + cos . Let  =  + √2 − 1. Then 0 = √21− 1 − √22− 1 · 1 + sin2 1( + cos )2 · cos ((+ cos + cos) + sin )2 2  = 1 √2 − 1 − 2 √2 − 1 ·  cos  + cos2  + sin2  ( + cos )2 + sin2  = 1 √2 − 1 − 2 √2 − 1 ·  cos  + 1 2 + 2 cos  + 1 = 2 + 2 cos  + 1 − 2 cos  − 2 √2 − 1 (2 + 2 cos  + 1) = 2 − 1 √2 − 1 (2 + 2 cos  + 1) But 2 = 22 + 2 √2 − 1 − 1 = 2 + √2 − 1  − 1 = 2 − 1, so 2 + 1 = 2, and 2 − 1 = 2( − 1). So 0 = √2 − 1 (2 2( −+ 2 1) cos ) = √2 −  1 (− 1+ cos ). But  − 1 = 2 +  √2 − 1 − 1 =  √2 − 1, so 0 = 1( + cos ). 30. Suppose that  =  +  is a tangent line to the ellipse. Then it intersects the ellipse at only one point, so the discriminant of the equation 2 2 + ( + )2 2 = 1 ⇔ (2 + 22)2 + 22 + 22 − 22 = 0 must be 0; that is, 0 = (22)2 − 4(2 + 22)(22 − 22) = 4422 − 4222 + 424 − 4422 + 4422 = 422(22 + 2 − 2) Therefore, 22 + 2 − 2 = 0. Now if a point ( ) lies on the line  =  + , then  =  − , so from above, 0 = 22 + 2 − ( − )2 = (2 − 2)2 + 2 + 2 − 2 ⇔ 2 + 2 2 − 2  + 2 − 2 2 − 2 = 0. (a) Suppose that the two tangent lines from the point ( ) to the ellipse have slopes  and 1  . Then  and 1  are roots of the equation 2 + 2 2 − 2  + 2 − 2 2 − 2 = 0. This implies that ( − ) − 1  = 0 ⇔ 2 −  + 1  +  1  = 0, so equating the constant terms in the two quadratic equations, we get 2 − 2 2 − 2 = 1  = 1, and hence 2 − 2 = 2 − 2. So ( ) lies on the hyperbola 2 − 2 = 2 − 2. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 3 PROBLEMS PLUS ¤ 297 (b) If the two tangent lines from the point ( ) to the ellipse have slopes  and − 1  , then  and − 1  are roots of the quadratic equation, and so ( − ) + 1  = 0, and equating the constant terms as in part (a), we get 2 − 2 2 − 2 = −1, and hence 2 − 2 = 2 − 2. So the point ( ) lies on the circle 2 + 2 = 2 + 2. 31.  = 4 − 22 −  ⇒ 0 = 43 − 4 − 1. The equation of the tangent line at  =  is  − (4 − 22 − ) = (43 − 4 − 1)( − ) or  = (43 − 4 − 1) + (−34 + 22) and similarly for  = . So if at  =  and  =  we have the same tangent line, then 43 − 4 − 1 = 43 − 4 − 1 and −34 + 22 = −34 + 22. The first equation gives 3 − 3 =  −  ⇒ ( − )(2 +  + 2) = ( − ). Assuming  6= , we have 1 = 2 +  + 2. The second equation gives 3(4 − 4) = 2(2 − 2) ⇒ 3(2 − 2)(2 + 2) = 2(2 − 2) which is true if  = −. Substituting into 1 = 2 +  + 2 gives 1 = 2 − 2 + 2 ⇒  = ±1 so that  = 1 and  = −1 or vice versa. Thus, the points (1 −2) and (−1 0) have a common tangent line. As long as there are only two such points, we are done. So we show that these are in fact the only two such points. Suppose that 2 − 2 6= 0. Then 3(2 − 2)(2 + 2) = 2(2 − 2) gives 3(2 + 2) = 2 or 2 + 2 = 2 3. Thus,  = (2 +  + 2) − (2 + 2) = 1 − 2 3 = 1 3 , so  = 1 3 . Hence, 2 + 1 92 = 2 3 , so 94 + 1 = 62 ⇒ 0 = 94 − 62 + 1 = (32 − 1)2. So 32 − 1 = 0 ⇒ 2 = 1 3 ⇒ 2 = 1 92 = 1 3 = 2, contradicting our assumption that 2 6= 2. 32. Suppose that the normal lines at the three points 1 2 1, 2 2 2, and 3 2 3 intersect at a common point. Now if one of the  is 0 (suppose 1 = 0) then by symmetry 2 = −3, so 1 + 2 + 3 = 0. So we can assume that none of the  is 0. The slope of the tangent line at  2   is 2, so the slope of the normal line is −21 and its equation is  − 2  = − 1 2 ( − ). We solve for the -coordinate of the intersection of the normal lines from 1 2 1 and 2 2 2:  = 2 1 − 1 21 ( − 1) = 2 2 − 1 22 ( − 2) ⇒ 212 − 211  = 2 2 − 2 1 ⇒ 21−122  = (−1 − 2)(1 + 2) ⇔  = −212(1 + 2) (1). Similarly, solving for the -coordinate of the intersections of the normal lines from 1 2 1 and 3 2 3 gives  = −213(1 + 3) (2). Equating (1) and (2) gives 2(1 + 2) = 3(1 + 3) ⇔ 1(2 − 3) = 2 3 − 2 2 = −(2 + 3)(2 − 3) ⇔ 1 = −(2 + 3) ⇔ 1 + 2 + 3 = 0. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.298 ¤ CHAPTER 3 PROBLEMS PLUS 33. Because of the periodic nature of the lattice points, it suffices to consider the points in the 5 × 2 grid shown. We can see that the minimum value of  occurs when there is a line with slope 2 5 which touches the circle centered at (3 1) and the circles centered at (0 0) and (5 2). To find  , the point at which the line is tangent to the circle at (0 0), we simultaneously solve 2 + 2 = 2 and  = − 5 2 ⇒ 2 + 25 4 2 = 2 ⇒ 2 = 29 4 2 ⇒  = √229 ,  = − √529 . To find , we either use symmetry or solve ( − 3)2 + ( − 1)2 = 2 and  − 1 = − 5 2( − 3). As above, we get  = 3 − √229 ,  = 1 + √529 . Now the slope of the line   is 2 5, so   = 1 + √529  − − √529  3 − √229  − √229  = 1 + √10 29  3 − √429  = √29 + 10 3 √29 − 4 = 2 5 ⇒ 5 √29 + 50 = 6 √29 − 8 ⇔ 58 = √29 ⇔  = √58 29. So the minimum value of  for which any line with slope 2 5 intersects circles with radius  centered at the lattice points on the plane is  = √58 29 ≈ 0093. 34. Assume the axes of the cone and the cylinder are parallel. Let  denote the initial height of the water. When the cone has been dropping for  seconds, the water level has risen  centimeters, so the tip of the cone is  + 1 centimeters below the water line. We want to find  when  +  =  (when the cone is completely submerged). Using similar triangles, 1  +  =   ⇒ 1 =   ( + ). volume of water and cone at time  = original volume of water + volume of submerged part of cone 2( + ) = 2 + 1 312( + ) 2 + 2 = 2 + 1 3 2 2 ( + )3 322 = 2( + )3 Differentiating implicitly with respect to  gives us 322   = 23( + )2   + 3( + )2   ⇒   = 2( + )2 22 − 2( + )2 ⇒     +  =  = 22 22 − 22 = 2 2 − 2 . Thus, the water level is rising at a rate of 2 2 − 2 cms at the instant the cone is completely submerged. °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.CHAPTER 3 PROBLEMS PLUS ¤ 299 35. By similar triangles,  5 =  16 ⇒  = 5 16 . The volume of the cone is  = 1 32 = 1 3516 2  = 25 768  3, so   = 25 256  2   . Now the rate of change of the volume is also equal to the difference of what is being added (2 cm3min) and what is oozing out (, where  is the area of the cone and  is a proportionality constant). Thus,   = 2 − . Equating the two expressions for   and substituting  = 10,   = −03,  = 5(10) 16 = 25 8 , and √281  = 10 16 ⇔  = 5 8 √281, we get 25 256 (10)2(−03) = 2 −  25 8 · 5 8 √281 ⇔ 125 √281 64 = 2 + 750 256 . Solving for  gives us  = 256 + 375 250 √281 . To maintain a certain height, the rate of oozing, , must equal the rate of the liquid being poured in; that is,   = 0. Thus, the rate at which we should pour the liquid into the container is  = 256 + 375 250 √281 ·  · 25 8 · 5 √281 8 = 256 + 375 128 ≈ 11204 cm3min °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved.300 ¤ CHAPTER 3 PROBLEMS PLUS °c 2016 Cengage Learning. All Rights Reserved. May not be scanned, copied, or duplicated, or posted to a publicly accessible website, in whole or in part. NOT FOR SALE INSTRUCTOR USE ONLY © Cengage Learning. All Rights Reserved. [Show More]

Last updated: 2 years ago

Preview 1 out of 1 pages

Buy Now

Instant download

We Accept:

We Accept
document-preview

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

We Accept

Reviews( 0 )

$11.00

Buy Now

We Accept:

We Accept

Instant download

Can't find what you want? Try our AI powered Search

65
0

Document information


Connected school, study & course


About the document


Uploaded On

Jan 06, 2020

Number of pages

1

Written in

Seller


seller-icon
Kirsch

Member since 5 years

941 Documents Sold

Reviews Received
111
37
8
4
28
Additional information

This document has been written for:

Uploaded

Jan 06, 2020

Downloads

 0

Views

 65

Document Keyword Tags


$11.00
What is Scholarfriends

In Scholarfriends, a student can earn by offering help to other student. Students can help other students with materials by upploading their notes and earn money.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·