Engineering  >  Research Paper  >  SPEED CONTROL OF DC MOTOR USING COMBINED ARMATURE AND FIELD CONTROL (All)

SPEED CONTROL OF DC MOTOR USING COMBINED ARMATURE AND FIELD CONTROL

Document Content and Description Below

SPEED CONTROL OF DC MOTOR USING COMBINED ARMATURE AND FIELD CONTROL Mustafa Aboelhassan Doctoral Degree Programme (2), FEEC BUT E-mail: [email protected] Supervised by: Jiří Skalický ... E-mail: [email protected] ABSTRACT The aim of this investigation is to describe the principle of DC motor speed control using nonlinear combined control (armature voltage and field current). For the armature control mode, the field current is held constant and an adjustable voltage is applied to the armature. In the field control mode, the armature voltage is held constant and an adjustable voltage is applied to the field. The mathematical model of a separately excited DC motor (SEDM) with independent armature/filed control can be obtained by considering the electrical system, electromagnetic interaction and mechanical system. Simulation models of DC motor speed control methods and feedback control system for DC motor drives have been developed using MATLAB/Simulink. 1. INTRODUCTION DC motors consist of rotor-mounted windings (armature) and stationary windings (field poles). In all DC motors, except permanent magnet brushless motors, current must be conducted to the armature windings by passing current through carbon brushes that slide over a set of copper surfaces called a commutator, which is mounted on the rotor. The commutator bars are soldered to armature coils. The brush/commutator combination makes a sliding switch that energizes particular portions of the armature, based on the position of the rotor. This process creates north and south magnetic poles on the rotor that are attracted to or repelled by north and south poles on the stator, which are formed by passing direct current through the field windings. It's this magnetic attraction and repulsion that causes the rotor to rotate. The greatest advantage of DC motors may be speed control. Since speed is directly proportional to armature voltage and inversely proportional to the magnetic flux produced by the poles, adjusting the armature voltage and/or the field current will change the rotor speed. Today, adjustable frequency drives can provide precise speed control for AC motors, but they do so at the expense of power quality, as the solid-state switching devices in the drives produce a rich harmonic spectrum. The DC motor has no adverse effects on power quality. [Show More]

Last updated: 3 years ago

Preview 1 out of 5 pages

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)
Preview image of SPEED CONTROL OF DC MOTOR USING COMBINED ARMATURE AND FIELD CONTROL document

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Reviews( 0 )

$7.00

Buy Now

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Instant download

Can't find what you want? Try our AI powered Search

120
0

Document information


Connected school, study & course


About the document


Uploaded On

Apr 28, 2021

Number of pages

5

Written in

All

Seller


Profile illustration for Cheryshev
Cheryshev

Member since 4 years

102 Documents Sold

Reviews Received
6
4
1
0
1
Additional information

This document has been written for:

Uploaded

Apr 28, 2021

Downloads

 0

Views

 120

Document Keyword Tags

Recommended For You

Get more on Research Paper »

$7.00
What is Scholarfriends

Scholarfriends.com Online Platform by Browsegrades Inc. 651N South Broad St, Middletown DE. United States.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·