Mathematics  >  QUESTIONS & ANSWERS  >  MATH 225 Final Exam 2, Individual Test - Solutions Working Included (All)

MATH 225 Final Exam 2, Individual Test - Solutions Working Included

Document Content and Description Below

SPECIAL INSTRUCTIONS • Show and explain all of your work unless the question directs otherwise. Simplify all answers. + The use of a calculator is not permitted. • Answer the questions in the s ... paces pr‹ivided on the question sheets. If you run out of room for an answer, esk for extra paper. This is a closed-hook, individual exam. Find the general solution ‹if 2. Show that when Euler’s rnetliotl is used to approximate the solution of the initial value problem y’ = 5y, y(tl) = 1, at z = 1, then the approximation with stepsize ft is (1 + rh) '"' 3. A brine solution flows at a constant rate of 8 L/min into a lnrge tank that initially held lfl() L of water in which was dissolveil 0.6 kg of salt. The solution inside the t‹ink is kept well stirred and flows out of the tank at a rate of 8 L/iriin. The solution entering the tank contains disso1ve‹1 salt at a concentration of 0.05 kg/L Let A(I) represent the mass of salt in the tank at time t minutes. Finrl A(t .tt,li 225 (At›ri1 1Ctli, 2t)1g) Final Exaiii @2, Inrlividiiiil Test (b) When will the c‹iiicentration of salt in the tank reach 0.02 kg/L‘/ 6. For each of the differential equations below, determine the form of the particular solution (do not evaluate the coefficients!). The homogeneous solution is given. (a) y" -I- 9// 4/3 sin(3t) (yg(I) cv cos(3/) -I- sin(3t)) 7. Find the particular solution tti the rlifferential equation 8. An 6 kg mass is attaclietl to a spring with spring constant 40 fi/m, rind the system is at rest. At t,inie t — I), an external force F(t) = ‹Nos(2f) N is applied to the system. The damping constant for t.he system is 3 Ns/in. (o) Translate the wortl problem into an initial value problem. 4 S. Find the Laplace transfortli Of the functi‹in /i(t) = e°’I siri(2t). 10. Theory (a) Use Tlieoretii 6 (see the A‹lclitiona1 Information pages si'1'rlied with this exam) to discuss the existence anrl uniqueness ‹if a solution to the initial value pt obleni (1 -I- t‘*) ” -I- t¿’ — y - tait(/), v(/ ) = Vo. y’(t„) — Vt, where tt . anti are real constants 5 (b) Prove proper ty P4 (see the Additionnl Information provitled with this exam). 11. Use the method of Laplace Transforms to solve the iiiiti‹i1 vnlue problem y” -I- 4y - g(/), t/(0) — — I, y’(U) 0, where AdcJitional lnforiiiation Theorem S Suppose p(t), q(l), and g(I) are ‹ ontinuoiis on an interavl (‹i, 6) that contains the point fb. Then, for any choice of the initial values TQ and Yt, there exists a initi ie solution y(t) on the same interval (n, b) to the initial value problem ^”(i) + n(i)»’(t) + 4( )v(^) = »(^)• y(to) = *'•• v’(fo) = *'i- BRIEF TABLE OF LAPLACE TRANSFORMS BRIEF TABLE OF PItOPERTIES OF THE LAPLACE TRANSFORM I [Show More]

Last updated: 3 years ago

Preview 1 out of 14 pages

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)
Preview image of MATH 225 Final Exam 2, Individual Test - Solutions Working Included document

Buy this document to get the full access instantly

Instant Download Access after purchase

Buy Now

Instant download

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Reviews( 0 )

$15.00

Buy Now

We Accept:

Payment methods accepted on Scholarfriends (We Accept)

Instant download

Can't find what you want? Try our AI powered Search

126
0

Document information


Connected school, study & course


About the document


Uploaded On

Jun 22, 2020

Number of pages

14

Written in

All

Seller


Profile illustration for Kirsch
Kirsch

Member since 6 years

949 Documents Sold

Reviews Received
111
37
8
4
28
Additional information

This document has been written for:

Uploaded

Jun 22, 2020

Downloads

 0

Views

 126

Document Keyword Tags


$15.00
What is Scholarfriends

Scholarfriends.com Online Platform by Browsegrades Inc. 651N South Broad St, Middletown DE. United States.

We are here to help

We're available through e-mail, Twitter, Facebook, and live chat.
 FAQ
 Questions? Leave a message!

Follow us on
 Twitter

Copyright © Scholarfriends · High quality services·